Math, asked by Sudhanshu2074, 1 year ago

if x=
9 - 4 \sqrt{5}
Find
 \sqrt{x}  - 1   \div  \sqrt{x}

Answers

Answered by Thatsomeone
3

\textbf {\underline{\underline{ANSWER}}}

a= 9 - 4 \sqrt{5}  \\  \\  \\  \sqrt{a}  =  { \sqrt{9 - 4 \sqrt{5} } }  \\  \\  \\  \sqrt{9 - 4 \sqrt{5} }  =  \sqrt{x}   -   \sqrt{y}  \\  \\  \\ squaring \: both \: sides \\  \\  \\ 9 - 4 \sqrt{5}  = x  + y - 2 \sqrt{xy}  \\  \\  \\ x + y = 9 \\  \\  \\  - 2 \sqrt{xy}  =  - 4 \sqrt{5}  \\  \\  \\ xy = 20 \\  \\  \\ solving \: this \: we \: get \:  \\  \\  \\ x = 4 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: y = 5 \\  \\  \\ so \:  \\  \\  \\   \sqrt{9 - 4 \sqrt{5} }  =  \sqrt{4}  -  \sqrt{5}  \\  \\  \\  = 2 -  \sqrt{5}  \\  \\  \\  \sqrt{a}   -  \frac{1}{ \sqrt{a} }  = 2 -  \sqrt{5}  -   \frac{1}{ \sqrt{2 -  \sqrt{5} } }  \\  \\  \\  = 2 -  \sqrt{5}   -  \frac{ 2 +  \sqrt{5}  }{(2 -  \sqrt{5})(2 +  \sqrt{5)}  }  \\  \\  \\  = 2 -  \sqrt{5}   -   \frac{2 +  \sqrt{5} }{ - 1}  \\  \\  \\  = 2  -  \sqrt{5}  + 2 -  \sqrt{5}  \\  \\  \\  = 4

THANKS


Sudhanshu2074: naikhe samajh आवत
Thatsomeone: what is this brother ?
Sudhanshu2074: nothing
Similar questions