Math, asked by Yshnu1734, 1 year ago

If x:y= 1: 3, y:z= 5: k, z:t= 2: 5 and t:x= 3: 4 then what is the value of k?

Answers

Answered by kunalv482
0

Answer:

k = 1/2

Step-by-step explanation:

As we know,

If a:b = N1 : D1,

b:c = N2:D2,

c:d = N3:D3

then  we can write =>  

a : b : c : d = N1*N2*N3 : D1*N2*N3 : D1*D2*N3 : D1*D2*D3   ----eq(1)

from eq(1)

x : t = 1*5*2 : 3*k*5

x:t = 10 : 15*k

x:t = 2 : 3k

4:3 = 2/k : 3

from here,

2/k = 4

1/k = 2

k = 1/2

just practise this trick and you can find any solutin of this type of question.

Answered by qwsuccess
0

Given: x:y= 1: 3,  y:z= 5: k, z:t= 2: 5 \ and \ t:x= 3: 4

To find: The value of k

Solution: According to the given question,

\frac{x}{y} = \frac{1}{3}

Using cross multiplication:

3x = y   ...(1)

also, \frac{y}{z} = \frac{5}{k}                              [Given]

i.e., ky = 5z   ...(2)                   [Using cross multiplication]

\frac{z}{t} = \frac{2}{5}                                       [Given]

i.e., 5z = 2t   ...(3)                    [Using cross multiplication]

\frac{t}{x} = \frac{3}{4}                                       [Given]

i.e., 4t = 3x   ...(4)                    [Using cross multiplication]

Now, using (1) and (4)

y = 3x \ and \ 3x = 4t

i.e., y = 3x = 4t

y = 4t  ...(5)

It  can be written as:

y = 2*2t

From (3), 2t = 5z

y = 2 * 5z = 10z

Now, putting y = 10z in equation (2)

k * 10z = 5z

10 k = 5

k = \frac{5}{10} = \frac{1}{2}

Hence, the value of  k is \frac{1}{2}.

Similar questions