Math, asked by nandanchandel, 1 year ago

if x+y+z=1,xy+yz+zx=-1,xyz=-1 then find value of x^3+y^3+z^3

Answers

Answered by ishwarsinghdhaliwal
13

Identity:x ^{3} +   {y}^{3}   +z ^{3}  -3xyz = (x+y+z)( x ^{2}  +y ^{2}  +z ^{2}  -xy-yz-zx) \\ x+y+z=1,xy+yz+zx=-1,xyz=-1 \:  \\ putting \:  \: values \: we \: get \:  \\ x ^{3} +   {y}^{3}   +z ^{3}  -3( - 1) = (1)(x ^{2}  + {y}^{2}  +  {z}^{2}  + 1) \\ x ^{3} +   {y}^{3}   +z ^{3}   + 3 \:  = x ^{2}  + {y}^{2}  +  {z}^{2}  + 1 \:  \\ x ^{3} +   {y}^{3}   +z ^{3}  = x ^{2}  + {y}^{2}  +  {z}^{2}  + 1 - 3 \\ x ^{3} +   {y}^{3}   +z ^{3}  = x ^{2}  + {y}^{2}  +  {z}^{2}  - 2 \:  \:  \:  \:  \:  \:  \:  \: ....(1) \\ now \\ (x + y + z) ^{2}   = {x}^{2}  +  {y}^{2}  +  {z}^{2}  + 2(xy + yz + xz) \\ (1) ^{2}  =  {x}^{2}  +  {y}^{2}  +  {z}^{2} + 2( - 1) \\ 1 =  {x}^{2}  +  {y}^{2}  +  {z}^{2}  -  2 \\ {x}^{2}  +  {y}^{2}  +  {z}^{2} = 2 + 1 \\ {x}^{2}  +  {y}^{2}  +  {z}^{2} = 3 \\ put   \: in \:  equation \: \: (1) \\ x ^{3} +   {y}^{3}   +z ^{3}   = 3 - 2 \\ x ^{3} +   {y}^{3}   +z ^{3}  = \: 1

nandanchandel: thnks bro ☺
ishwarsinghdhaliwal: wlc
Similar questions