Math, asked by harshitha3810, 1 year ago

If x2 + (1/x2) = 1, then what is the value of x48 + x42 + x36 + x30 + x24 + x18 + x12 + x6 + 1?

Answers

Answered by DelcieRiveria
3

Answer:

The value of given expression is 1.

Step-by-step explanation:

Using the fact:

if x+\frac{1}{x}=\sqrt{3},  

then,

x^6 = -1

If x^2+\frac{1}{x^2}=1

First find: x+\frac{1}{x}

(x+\frac{1}{x})^2 =x^2+\frac{1}{x^2}+2

Then;

(x+\frac{1}{x})^2 = 1+2 = 3

x+\frac{1}{x}=\sqrt{3}

x^6 = -1

We have to find the value of x^{48} + x^{42} + x^{36}+ x^{30}+ x^{24} + x^{18} + x^{12} + x^{6}+1:

We can write this as:

(x^{6})^8+ (x^{6})^7 + (x^{6})^6+ (x^{6})^5+ (x^{6})^4 + (x^{6})^3+ (x^{6})^2 + x^{6}+1:

Substitute x^6 = -1 then;

(-1)^8+(-1)^7+(-1)^6+(-1)^5+(-1)^4+(-1)^3+(-1)^2+(-1)+1

1-1+1-1+1-1+1-1+1

Simplify:

1

Therefore, the value of  x^{48} + x^{42} + x^{36}+ x^{30}+ x^{24} + x^{18} + x^{12} + x^{6}+1 is, 1.

Similar questions