If x2+1\x2=14, find the value of x3+1/x3.
Answers
Answered by
611
x² + 1/x² = 14
(x + 1/x)² -2.x.1/x = 14
(x + 1/x )² -2 = 14
(x + 1/x )² = 16
take square root both sides
(x + 1/x) = 4
then,
x³ + 1/x³ = ( x + 1/x)³ - 3.x.1/x(x + 1/x)
= ( x +1/x)³ -3(x + 1/x)
= (4)³ -3(4)
= 64 - 12
= 52
(x + 1/x)² -2.x.1/x = 14
(x + 1/x )² -2 = 14
(x + 1/x )² = 16
take square root both sides
(x + 1/x) = 4
then,
x³ + 1/x³ = ( x + 1/x)³ - 3.x.1/x(x + 1/x)
= ( x +1/x)³ -3(x + 1/x)
= (4)³ -3(4)
= 64 - 12
= 52
Answered by
261
Hey there!
Given,
x² + 1/x² = 14
(x + 1/x)² - 2(x)(1/x) = 14
(x + 1/x)² = 14+2
(x + 1/x)² = 16
x + 1/x = √16
x + 1/x = 4
-----------------
(x³ + 1/x³) = (x + 1/x)³ - 3(x.1/x) (x+1/x)
= 4³ - 3(4)
= 64 - 12
= 52.
:)
Given,
x² + 1/x² = 14
(x + 1/x)² - 2(x)(1/x) = 14
(x + 1/x)² = 14+2
(x + 1/x)² = 16
x + 1/x = √16
x + 1/x = 4
-----------------
(x³ + 1/x³) = (x + 1/x)³ - 3(x.1/x) (x+1/x)
= 4³ - 3(4)
= 64 - 12
= 52.
:)
Similar questions