If x2-3x+1=0 show that x5+1/x5=123. (x raised to 5)
Answers
Answered by
6
Method 1 : Using Quadratic formula
x2−3x+1=0
x=−(−3)±(−3)2−4∗1∗1√2∗1
x=3±5√2
For x =3+5√2
x5+1x5 =(3+5√2)5+1(3+5√2)5
x5+1x5 =(3+5√)532+32(3+5√)5
Let us find (3+5–√)5=(3+5–√)2(3+5–√)3
=(9+5+65–√)(27+55–√+95–√(3+5–√))
= (14+65–√)(72+325–√)
= 1008+4485–√+4325–√+960
= 1968+8805–√
So, x5+1x5 =1968+8805√32+321968+8805√
Rationalizing the denominator:
x5+1x5 =1968+8805√32+321968+8805√⋅1968−8805√1968−8805√
x5+1x5 =1968+8805√32+32(1968−8805√)19682−8802∗5
x5+1x5 =1968+8805√32+32(1968−8805√)1024[math]x5+1x5 =1968+8805√32+1968−8805√32
x2−3x+1=0
x=−(−3)±(−3)2−4∗1∗1√2∗1
x=3±5√2
For x =3+5√2
x5+1x5 =(3+5√2)5+1(3+5√2)5
x5+1x5 =(3+5√)532+32(3+5√)5
Let us find (3+5–√)5=(3+5–√)2(3+5–√)3
=(9+5+65–√)(27+55–√+95–√(3+5–√))
= (14+65–√)(72+325–√)
= 1008+4485–√+4325–√+960
= 1968+8805–√
So, x5+1x5 =1968+8805√32+321968+8805√
Rationalizing the denominator:
x5+1x5 =1968+8805√32+321968+8805√⋅1968−8805√1968−8805√
x5+1x5 =1968+8805√32+32(1968−8805√)19682−8802∗5
x5+1x5 =1968+8805√32+32(1968−8805√)1024[math]x5+1x5 =1968+8805√32+1968−8805√32
Answered by
2
1/x = 2(3 - √5)/4, or 2(3 + √ 5)/4 [Rationalizing the ... + 1/x) = 3^5 - 5 * 3³ + 5 * 3 [ substituting the value of x found in (3) ]
Similar questions
Math,
7 months ago
Math,
7 months ago
Math,
7 months ago
Math,
1 year ago
World Languages,
1 year ago