Math, asked by ajaykumarreddy2003, 1 year ago

if X²+y²=7xy show that 2log(x+y)=logx+logy+2log3

Answers

Answered by 99JATIN
7
(x+y)^2-2xy=7xy
(x+y)^2=9xy
log((x+y)^2)=log(((3)^2)xy)
2log(x+y)=logx+logy+2log3
Answered by Anonymous
47

Solution :-

x² + y² = 7xy

Adding 2xy on both sides

x² + y² + 2xy = 7xy + 2xy

(x + y)² = 9xy

[ Because (x + y)² = x² + y² + 2xy ]

(x + y)² = 3²xy

Taking log on both sides

 \sf \longrightarrow  log(x + y)^2 =  log 3^2xy \\  \\  \\  \sf \longrightarrow log(x + y)^2  =  log 3^2 +  logx +  logy \\  \\  \\  \boxed{ \bf \because logab =  loga +  logb} \\  \\  \\  \sf \longrightarrow 2 log(x + y) = 2 log3 +  logx +  logy \\  \\  \\  \boxed{ \bf \because loga^m  = m. loga } \\  \\  \\  \sf \longrightarrow 2 log(x + y) =  logx +  logy + 2log3

Hence proved.

Laws of logarithms used :-

 \tt \longrightarrow logab =  loga +  logb

 \tt \longrightarrow loga^m  = m. loga

Similar questions