If x³ - 3x² + 3x - 7 = (x + 1)(ax² + bx +c)+d,then find (a + b + c+d)
Answers
Answer:
Required sum is - 10.
Step-by-step explanation:
= > x^3 - 3x^2 + 3x - 7 = ( x + 1 )( ax^2 + bx + c ) + d
= > x^3 - 3x^2 + 3x - 7 = ax^3 + ax^2 + bx^2 + bx + cx + c + d
= > x^3 - 3x^2 + 3x - 7 = ax^3 + ( a + b )x^2 + ( b + c )x + ( c + d )
Comparing both sides :
= > Coefficient of x^2 on LHS = Coefficient of x^2 on RHS
= > - 3 = a + b Or a + b = - 3 ...( 1 )
= > Constant term on LHS = constant term on RHS
= > - 7 = ( c + d ) Or c + d = - 7 ...( 2 )
Adding ( 1 ) and ( 2 ) :
= > a + b + c + d = - 3 - 7
= > a + b + c + d = - 10
Hence the required sum is - 10.
Question :--- If x³ - 3x² + 3x - 7 = (x + 1)(ax² + bx +c)+d,then find (a + b + c+d) ?
Answer :---
→ x³ - 3x² + 3x - 7 = (x + 1)(ax² + bx +c)+d
Multiplying RHS we get,
→ x³ - 3x² + 3x - 7 = ax³ + bx² + cx + ax² + bx + c + d .
→ x³ - 3x² + 3x - 7 = ax³ + bx² + ax² + cx + bx + c + d.
→ x³ - 3x² + 3x - 7 = ax³ + (b+a)x² + (c + b)x + c + d .
Comparing with Each Cofficient now , we get,
→ a = 1
→ (b+a) = (-3)
→ (c+b) = 3
→ (c+d) = (-7)
Adding (1) and (2) values we get, now,
→ (b+a) + (c+d) = (-3) + (-7)