Math, asked by p5akGwnAbhishanidhi, 1 year ago

if xm yn = (x+y)m+n show that dy/dx= y/x and find d2y/dx2 plzzz help !!

Answers

Answered by MaheswariS
24

\text{I have applied logarithmic differentition to find}

\text{the derivative of the given function}

\textbf{Given:}

x^my^n=(x+y)^{m+n}

\text{Take logarithm on both sides}

m\;log\;x+n\;log\;y=(m+n)\;log\;(x+y)

\text{Differentiate with respect to x}

\displaystyle\frac{m}{x}+\frac{n}{y}\;\frac{dy}{dx}=\frac{m+n}{x+y}(1+\frac{dy}{dx})

\implies\displaystyle\frac{m}{x}+\frac{n}{y}\;\frac{dy}{dx}=\frac{m+n}{x+y}+\frac{m+n}{x+y}\frac{dy}{dx}

\implies\displaystyle(\frac{n}{y}-\frac{m+n}{x+y})\frac{dy}{dx}=\frac{m+n}{x+y}-\frac{m}{x}

\implies\displaystyle(\frac{nx+ny-my-ny}{y(x+y)})\frac{dy}{dx}=\frac{mx+nx-mx-my}{x(x+y)}

\implies\displaystyle(\frac{nx-my}{y})\frac{dy}{dx}=\frac{nx-my}{x}

\implies\displaystyle\frac{dy}{dx}=\frac{y}{x}

\text{Differentiate again with respect to x}

\text{Using quotient rule of logarithm}

\boxed{\bf\frac{d(\frac{u}{v})}{dx}=\frac{v\,\frac{du}{dx}-u\,\frac{dv}{dx}}{v^2}}

\implies\displaystyle\frac{d^2y}{dx^2}&=\frac{x\times\frac{dy}{dx}-y\times1}{x^2}

&=\displaystyle\frac{x\times\frac{y}{x}-y}{x^2}

&=0

Similar questions