Math, asked by seemaraniseema705, 10 months ago

If y+1/y=3. Then find y^5+1/y^5

Answers

Answered by TakenName
5

Answer:

123

Step-by-step explanation:

(y+\frac{1}{y} )^2=y^2+\frac{1}{y^2} +2

(y+\frac{1}{y} )^3=y^3+\frac{1}{y^3} +3(y+\frac{1}{y} )

From that, we can get :

y^2+\frac{1}{y^2}=(y+\frac{1}{y} )^2 -2,

y^3+\frac{1}{y^3}=(y+\frac{1}{y} )^3-3(y+\frac{1}{y} ).

y^2+\frac{1}{y^2}=7

y^3+\frac{1}{y^3}=18

(y^2+\frac{1}{y^2})*(y^3+\frac{1}{y^3})=y^5+\frac{1}{y^5} +y+\frac{1}{y}

From that, we can get :

y^5+\frac{1}{y^5} =(y^2+\frac{1}{y^2})*(y^3+\frac{1}{y^3})-(y+\frac{1}{y}).

y^5+\frac{1}{y^5} =123

Similar questions