If y=2+√3Find the value of (a) y + 1/y (b) y2 + 1/y2 (c) y3 + 1/y3 (d) y4 + 1/y4
Answers
Answered by
0
Answer:
y+
y
1
=9
Squaring both side
(y+
y
1
)
2
=9
2
y
2
+
y
2
1
+2×y×
y
1
=81
y
2
+
y
2
1
=81−2=79
Squaring
(y
2
+
y
2
1
)
2
=(79)
2
y
4
+
y
4
1
+2×y
2
×
y
2
1
=6241
y
4
+
y
4
1
=6,239.
Answered by
0
Answer:
y=2+√3
a) y+1/y
=(2+√3)+1/(2+√3)
={(2+√3)^2+1}/(2+√3)
=(4+3+2.2.√3+1)/(2+√3)
=(8+4√3)/(2+√3)
=4(2+√3)/(2+√3)
=4
b) y^2+1/y^2
=(y+1/y)^2-2.y.1/y
=4^2-2
=16-2
=14
c) y^3+1/y^3
=(y+1/y)^3-3.y.1/y(y+1/y)
=(4)^3-3.4
=64-12
=52
d) y^4+1/y^4
=(y^2+1/y^2)^2-2.y^2.1/y^2
=(14)^2-2
=196-2
=194
Similar questions