if y=(cos x) ^ x find dy/dx
Answers
Answer:
y = (cos x)^x
Taking natural log on both sides,
ln y = x ln cos x
Now, differentiating both sides wrt x
We get,
1/y * dy/dx = x (-sinx/cosx) + ln cos x * (1)
So,
dy/dx = (cosx)^x { ln cos x - x tan x }
Answer:
( cos x )^x ( ㏑ cos x - x . ( tan x ) )
Step-by-step explanation:
Given :
y = ( cos x )^x
Taking ㏑ both side we get :
= > ㏑ y = ㏑ ( cos x )^x
= > ㏑ y = x . ㏑ cos x
Diff. w.r.t. x :
= > 1 / y ( d y / d x ) = x ( ㏑ cos x )' + ㏑ cos x ( x )'
= > 1 / y ( d y / d x ) = x ( ㏑ cos x )' + ㏑ cos x . 1
= > 1 / y ( d y / d x ) = x ( ㏑ cos x )' + ㏑ cos x
= > 1 / y ( d y / d x ) = x / cos x . ( cos x )' + ㏑ cos x
= > 1 / y ( d y / d x ) = x / cos x . ( - sin x ) + ㏑ cos x
= > 1 / y ( d y / d x ) = - x . ( sin x / cos x ) + ㏑ cos x
Putting value of y = ( cos x )^x
= > d y / d x = ( cos x )^x ( ㏑ cos x - x . ( tan x ) )
Hence we get required answer!