Math, asked by ViniJoshi3766, 11 months ago

If y=eᵃˣ sinbx,prove y₂-2ay₁+(a²+b²)y=0

Answers

Answered by MaheswariS
2

Answer:

\bf{y_2-2a\:y_1+(a^2+b^2)y=0}

Step-by-step explanation:

If y=eᵃˣ sinbx,prove y₂-2ay₁+(a²+b²)y=0

y=e^{ax}\:sinbx.......(1)

Using product rule differentiate with respect to x

y_1=e^{ax}\:(cosbx)b+sinbx\:e^{ax}a

y_1=e^{ax}\:(cosbx)b+a\:y......... (2) (using (1))

Using product rule differentiate with respect to x

y_2=b[e^{ax}\:(-sinbx)b+cosbx\:e^{ax}a]+a\:y_1 (using (2))

y_2=(-b^2)y+(y_1-a\:y)a+a\:y_1 (using (1))

y_2=-b^2y+a\:y_1-a^2y+a\:y_1

y_2=-b^2y+2a\:y_1-a^2y

y_2=-(a^2+b^2)y+2a\:y_1

\implies\:\boxed{\bf{y_2-2a\:y_1+(a^2+b^2)y=0}}

Similar questions