Math, asked by shivam9835, 11 months ago

If y = sin-1 x + cos-1x, find a
dy/dx​

Answers

Answered by rahman786khalilu
16

Step-by-step explanation:

hope it helps

0is the answer

Attachments:
Answered by harendrachoubay
4

\dfrac{dy}{dx}=0

Step-by-step explanation:

We have,

y = sin^{-1} x + cos^{-1} x           ........(1)

To find, \dfrac{dy}{dx}=?

Differentiating (1) w.r.t. x, we get

\dfrac{dy}{dx}= \dfrac{d(sin^{-1} x)}{dx}  +\dfrac{d(cos^{-1} x)}{dx}

\dfrac{dy}{dx}= \dfrac{1}{\sqrt{1-x^{2}}} +\dfrac{-1}{\sqrt{1-x^{2}}}

[ ∵ sin^{-1} x = \dfrac{1}{\sqrt{1-x^{2}}} and \cos ^{-1}x  = \dfrac{-1}{\sqrt{1-x^{2}}}]

\dfrac{dy}{dx}= \dfrac{1}{\sqrt{1-x^{2}}} -\dfrac{1}{\sqrt{1-x^{2}}}

\dfrac{dy}{dx}= 0</strong></p><p><strong>Hence, [tex]\dfrac{dy}{dx}=0

Similar questions