Math, asked by vaishnavi123h, 1 month ago

if y=sin(x+a)/cosx then find dy/dx​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y = \dfrac{sin(x + a)}{cosx}

We know,

\boxed{ \bf{ \: sin(x + y) = sinxcosy + sinycosx}}

Using this identity we get,

\rm :\longmapsto\:y = \dfrac{sinx \:  cosa + sina \: cosx}{cosx}

\rm :\longmapsto\:y = \dfrac{sinx \:  cosa }{cosx}   \: +  \: \dfrac{sina \: cosx}{cosx}

\rm :\longmapsto\:y \:  =  \: cosa \: tanx \:  +  \: sina

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y \:  = \dfrac{d}{dx}( \: cosa \: tanx \:  +  \: sina)

\rm :\longmapsto\:\dfrac{dy}{dx} \:  = \dfrac{d}{dx} \: cosa \: tanx \:  + \dfrac{d}{dx} \: sina

We know,

\boxed{ \bf{ \: \dfrac{d}{dx}k = 0}}

and

\boxed{ \bf{ \: \dfrac{d}{dx}k  \: f(x)= k \: \dfrac{d}{dx} \: f(x)}}

So, using these, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = cosa \: \dfrac{d}{dx} \: tanx \:  +  \: 0

\bf :\longmapsto\:\dfrac{dy}{dx} = cosa \:  {sec}^{2} x

Alternative Method :-

Given that

\rm :\longmapsto\:y = \dfrac{sin(x + a)}{cosx}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx} \dfrac{sin(x + a)}{cosx}

We know,

\boxed{ \bf{ \: \dfrac{d}{dx} \frac{u}{v}  =  \frac{v\dfrac{d}{dx}u \:  -  \: u\dfrac{d}{dx}v}{ {v}^{2} } }}

So, using this we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{cosx\dfrac{d}{dx}sin(x + a) - sin(x + a)\dfrac{d}{dx}cosx}{ {cos}^{2}x }

We know,

\boxed{ \bf{ \: \dfrac{d}{dx}sinx = cosx}}

\boxed{ \bf{ \: \dfrac{d}{dx}cosx =  - sinx}}

Using these, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{cosx \: cos(x + a) - sin(x + a) \: ( - sinx)}{ {cos}^{2}x }

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{cosx \: cos(x + a)  +  sin(x + a) \:  sinx}{ {cos}^{2}x }

We know,

\boxed{ \bf{ \: cosx \: cosy \:  +  \: sinx \: siny \:  =  \: cos(x - y)}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{cos(x + a - x)}{ {cos}^{2} x}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{cosa}{ {cos}^{2} x}

\bf :\longmapsto\:\dfrac{dy}{dx} = cosa \:  {sec}^{2} x

Additional Information :-

\boxed{ \bf{ \: \dfrac{d}{dx}tanx =  {sec}^{2}x}}

\boxed{ \bf{ \: \dfrac{d}{dx}cotx =  -  \:  {cosec}^{2}x}}

\boxed{ \bf{ \: \dfrac{d}{dx}cotx =  -  \:  {cosec} \: cotx}}

\boxed{ \bf{ \: \dfrac{d}{dx}secx =    \:  {sec} \: tanx}}

Answered by TrustedAnswerer19
132

Step-by-step explanation:

Before differenciate it, we have to know some formula .

 \pink{\sf \:  \odot \:  \frac{d \:  {x}^{n} }{dx}  = n {x}^{n - 1} } \\  \\\orange{  \sf \:  \odot \:  \frac{d \: sin \: x}{dx}  = cos \: x} \\  \\ \red{ \sf \:  \odot \:  \frac{d \: cos \: x}{dx}  =  \:  - sin \: x }\\  \\  \green{\sf \:  \odot \:  \frac{d}{dx} ( \frac{u}{v} ) =  \frac{v \frac{d \: u}{dx}  - u \frac{d \: v}{dx} }{ {v}^{2} }}  \\ \\\sf \:  \odot \: \frac{d \: (constant)  }{dx}  = 0\\\\  \sf \:  \odot \: cos(x - y) = cos \: x.cos \: y + sin \: x.sin \: y \\  \\  \sf \:  \odot \: cos( -  \theta) = cos \theta

Now solution :

Given,

 \:  \:  \:  \sf \: y  =  \frac{ \: sin(x + a)}{cos \: x} \\ \\   \sf \implies \frac{dy}{dx}  =  \frac{d}{dx} ( \frac{sin(x + a)}{cos \: x} ) \\  \\   \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{cos \: x \frac{d sin(x + a)}{dx}  - sin(x + a) \frac{d \: cos \: x}{dx} }{ {cos}^{2} x}  \\  \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{cos \: x.cos(x + a) \frac{d(x + a)}{dx} - sin(x + a)( - sin \: x) }{ {cos}^{2}x }  \\  \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = \frac{cos \: x.cos(x + a) (1 + 0){}{} - sin(x + a)( - sin \: x) }{ {cos}^{2}x } \:  \\   \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = \frac{cos \: x.cos(x + a)   +  sin(x + a)(  sin \: x) }{ {cos}^{2}x } \\  \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{cos(x - x - a)}{ {cos}^{2}x }  \\  \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{cos( - a)}{ {cos}^{2} x}  \\  \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{cos \: a}{ {cos}^{2} x}\\\\\sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:=cos \:a. {sec}^2\:x

Similar questions