Math, asked by nikitashrivastava175, 7 months ago

if y= tan-1 x prove that ( 1 + x square ) y2 + 2xy 1 =0

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \sf{y =  tan^{ - 1} (x) }

Differentiating both sides w.r.t. x,

 \sf{ \implies  \dfrac{dy}{dx}  =   \dfrac{1}{1 +  {x}^{2} }  } \\

 \sf{ \implies  y_{1} =   \dfrac{1}{1 +  {x}^{2} }  } \\

 \sf{ \implies  (1 +  {x}^{2} )y_{1} =  1 } \\

Again, differentiating both sides w.r.t x,

 \sf{ \implies  (1 +  {x}^{2} )y_{2}  + 2xy_{1} =  0 } \\

Similar questions
Math, 7 months ago