Physics, asked by awanakhushi, 2 months ago

if y = x/1+cot x , find dy/dx​

Answers

Answered by RISH4BH
137

\red{\bigstar}\underline{\underline{\textsf{\textbf{ Given That :- }}}}

  • y = x / 1 + cot x .

\red{\bigstar}\underline{\underline{\textsf{\textbf{ To Find:- }}}}

  • The derivative of the given function , i.e. dy/dx .

\red{\bigstar}\underline{\underline{\textsf{\textbf{ Solution:- }}}}

A function is given to us and we need to find out its derivative . The given function is :-

\sf\dashrightarrow y = \dfrac{ x }{1+cot(x)}

\rule{200}2

We can use the Quoteint Rule , as ,

\dashrightarrow \boxed{\red{\sf \dfrac{d}{dx}\bigg[ \dfrac{ f(x)}{g(x)}\bigg] = \dfrac{ g(x)\bigg( \dfrac{d}{dx}[ f(x)] \bigg)-  f(x)\bigg( \dfrac{d}{dx}[ g(x)]\bigg) }{ [ g(x)]^2} }}

\rule{200}2

Differenciate both sides wrt x :-

\sf\dashrightarrow\dfrac{dy}{dx}= \dfrac{d\bigg( \dfrac{x}{1+cot x} \bigg) }{dx} \\\\

\sf\dashrightarrow\dfrac{dy}{dx}= \dfrac{ (1+cot\ x)\dfrac{dx}{dx} - x \bigg( \dfrac{d}{dx}( 1 + cot x )\bigg)}{(1+cot x)^2} \\\\

\sf\dashrightarrow\dfrac{dy}{dx}= \dfrac{ 1 + cot x - x ( - cosec^2x ) }{( 1 + cot x)^2}\\\\

\sf\dashrightarrow\underset{\blue{\sf Required\ Derivative }}{\underbrace{\boxed{\pink{\sf \dfrac{dy}{dx}= \dfrac{x \ cosec^2x + cot\ x + 1 }{ ( 1 + cot x)^2} }}}}

\rule{200}2

Similar questions