Math, asked by mohdabubakarhaneef, 5 months ago

if y=x^tan x +(sin x)^cos x, find dy/dx​

Answers

Answered by TheValkyrie
26

Answer:

\tt \dfrac{dy}{dx} =x^{tan\:x}\times\bigg(log\:x\:sec^{2}\:x+\dfrac{tan\:x}{x}\bigg)+ sin\:x^{cos\:x}\times\bigg(-sin\:x\:log\:sin\:x+\dfrac{cos^{2} \:x}{sin\:x }\bigg)

Step-by-step explanation:

Given:

\tt y=x^{tan\:x} + sin\:x^{cos\:x}

To Find:

\tt \dfrac{dy}{dx}

Solution:

\tt \dfrac{dy}{dx} =\dfrac{d}{dx} (x^{tan\:x}+sin\:x^{cos\:x})

\tt \implies \dfrac{d}{dx} x^{tan\:x}+\dfrac{d}{dx} sin\:x^{cos\:x}

Now let,

\tt u = x^{tan\:x}

\tt v= sin\:x^{cos\:x}

Hence,

\tt \dfrac{dy}{dx} =\dfrac{du}{dx} +\dfrac{dv}{dx}---(1)

\tt u =x^{tan\:x}

Taking log on both sides,

\tt log\:u=log\: x^{tanx}

We know,

\tt log\:a^m=m\:log\:a

Hence,

\tt log\:u=tan\:x\:log\:x

Differentiate on both sides with respect to x,

\implies \tt \dfrac{1}{u}\: \dfrac{du}{dx} =log\:x\times sec^{2}\:x+\dfrac{1}{x}\:tan\:x

Since,

\tt \dfrac{d}{dx} (log\:x)=\dfrac{1}{x}

\tt \dfrac{d}{dx}(uv)=u'v+v'u

\tt \dfrac{d}{dx} (tan\:x)=sec^{2}\:x

Hence,

\tt \dfrac{du}{dx} =u\times\bigg(log\:x\:sec^{2}\:x+  \dfrac{tan\:x}{x}\bigg)

Substituting the value of u,

\tt \dfrac{du}{dx} =x^{tan\:x}\times\bigg(log\:x\:sec^{2}\:x+  \dfrac{tan\:x}{x}\bigg)---(2)

Now,

\tt v=sin\:x^{cos\:x}

Taking log on both sides,

\tt log\:v=cos\:x\:log\:sin\:x

Differentiating with respect to x,

\tt \dfrac{1}{v}\: \dfrac{dv}{dx} =log\:sin\:x\times -sin\:x+\dfrac{1}{sin\:x} \times cos\:x\times cos\:x

\tt \dfrac{dv}{dx} =v\times \bigg(-sin\:x\:log\:sin\:x+\dfrac{cos^2\:x}{sin\:x} \bigg)

Substitute value of v,

\tt \dfrac{dv}{dx} =sin\:x^{cos\:x}\times \bigg(-sin\:x\:log\:sin\:x+\dfrac{cos^2\:x}{sin\:x} \bigg)----(3)

Now substitute 2 and 3 in 1,

\tt \dfrac{dy}{dx} =x^{tan\:x}\times\bigg(log\:x\:sec^{2}\:x+\dfrac{tan\:x}{x}\bigg)+ sin\:x^{cos\:x}\times\bigg(-sin\:x\:log\:sin\:x+\dfrac{cos^{2} \:x}{sin\:x }\bigg)

Answered by TheBrainlyStar00001
77

Given:-

  • \bf y=x^{tanx}+(sinx)^{cosx}

To Find:-

  • \bf\dfrac{dy}{dx}

Solution:-

Apply ln on both sides ,

\implies \sf ln(y)=ln(x^{tanx})+ln(sinx^{cosx})\\\\\implies \sf ln(y)=tanx.lnx+cosx.ln(sinx)\;[\;Since\ ln(a^b)=b.lna]

Now , differentiate y with respect to x ,

\implies \sf \dfrac{d}{dx}(ln(y))=\dfrac{d}{dx}(tanx.lnx+cosx.ln(sinx))\\\\\implies \sf \dfrac{1}{y}.\dfrac{dy}{dx}=\dfrac{d}{dx}(tanx.lnx)+\dfrac{d}{dx}(cosx.ln(sinx))\;[\;Since\;,\dfrac{d}{dx}(lnx)=\dfrac{1}{x\;}]\\\\\implies \sf \dfrac{1}{y}.\dfrac{dy}{dx}=lnx.\dfrac{d}{dx}(tanx)+tanx\dfrac{d}{dx}(lnx)+ln(sinx)\dfrac{d}{dx}(cosx)+cosx\dfrac{d}{dx}(ln(sinx))

\sf Since\;,\dfrac{d}{dx}(uv)=v\dfrac{du}{dx}+u\dfrac{dv}{dx}\\\\\implies \sf \dfrac{1}{y}.\dfrac{dy}{dx}=lnx.sec^2x+\dfrac{tanx}{x}+ln(sinx)(-sinx)+cosx.\dfrac{1}{sinx}.cosx\\\\\implies \bf \dfrac{dy}{dx}=y(lnx.sec^2x+\dfrac{tanx}{x}-sinx.ln(sinx)+cotx.cosx)\\\\\implies \sf \dfrac{dy}{dx}=(x^{tanx}+(sinx)^{cosx})(lnx.sec^2x+\dfrac{tanx}{x}-sinx.ln(sinx)+cotx.cosx)

Answer:-

\bf \dfrac{dy}{dx}=(x^{tanx}+(sinx)^{cosx})(lnx.sec^2x+\dfrac{tanx}{x}-sinx.ln(sinx)+cotx.cosx)

★ Hope it helps u ★

Similar questions