Math, asked by biggyboo2357, 1 year ago

If |z-1|=2|z+1|then prove that the locus of the point z in the argand plane is 3x2 +3y2 +10x +3=0

Answers

Answered by BEJOICE
0

let \:  \: z = x + iy \\  |z - 1|  = 2 |z + 1|  \\  | x + iy- 1|  = 2 |x + iy + 1|  \\  |(x - 1) + iy|  = 2 |(x + 1) + iy|  \\  \sqrt{ {(x - 1)}^{2} +  {y}^{2}  }  = 2 \sqrt{ {(x  + 1)}^{2} +  {y}^{2}  } \\ {(x - 1)}^{2} +  {y}^{2}  = 4({(x  +  1)}^{2} +  {y}^{2} ) \\  {x}^{2}  - 2x + 1 +  {y}^{2}  = 4 {x}^{2}  + 8x + 4 + 4 {y}^{2}  \\ 3 {x}^{2}  + 3 {y}^{2}  + 10x + 3 = 0
Similar questions