Math, asked by irams3713, 6 months ago

if zeroes of p(x) = 2x²-7x+k are reciprocal of ech find k ??​

Answers

Answered by Anonymous
39

Given

  • p(x) = 2x² - 7x + k⠀⠀......[1]
  • Zeroes of the polynomial are reciprocal of each other.

To find

  • Value of k.

Solution

  • Let the one zero be α.

\sf\pink{⟶} We know that

\underline{\boxed{\tt{Sum\: of\: zeroes = \dfrac{-b}{a}}}}

\tt:\implies\: \: \: \: \: \: \: \: {α + \dfrac{1}{α} = \dfrac{-(-7)}{2}}

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{α^2 + 1}{α} = \dfrac{7}{2}}

\tt:\implies\: \: \: \: \: \: \: \: {2(α^2 + 1) = 7α }

\tt:\implies\: \: \: \: \: \: \: \: {2α^2 + 2 = 7α}

\tt:\implies\: \: \: \: \: \: \: \: {2α^2 - 7α + 2 = 0}⠀⠀.....[2]

\sf\pink{⟶} On comparing equation [1] and [2], we get

\large{\underline{\boxed{\bf{\orange{k = 2}}}}}

━━━━━━━━━━━━━━━━━━━━━━

Answered by QueenIsBusy
34

\huge{\underline{\underline{Given→}}}

  • \sf\green{Equation→p(x)=2x^2-7x+k}
  • \sf\green{The\:roots\:are\:reciprocal\:of\:each\:other}

\huge{\underline{\underline{To\:Find→}}}

\sf\purple{→The\:value\:of\:k.}

\huge{\underline{\underline{Answer→}}}

So let the roots be α\:and\:β

And the roots are reciprocal,so β=\dfrac{1}{α}

Relations of Zeroes & Coefficients:-

  • \bold{\underline{\underline{Sum\:of\:Zeroes\dashrightarrow}}}

\sf\blue{→α+β=\dfrac{-b}{a}}

\sf\blue{→α+\dfrac{1}{α}=\dfrac{-b}{a}}

\sf\blue{→\dfrac{α^2+1}{α}=\dfrac{-b}{a}}

\sf\blue{→\dfrac{α^2+1}{α}=\dfrac{-(-7)}{2}}

\sf\blue{→\dfrac{α^2+1}{α}=\dfrac{7}{2}......(i)}

  • \bold{\underline{\underline{Product\:of\:zeroes\dashrightarrow}}}

\sf\blue{→α\timesβ=\dfrac{c}{a}}

\sf\blue{→α\times\dfrac{1}{α}=\dfrac{c}{a}}

\sf\blue{→1=\dfrac{c}{a}}

\sf\blue{→1=\dfrac{k}{2}......(ii)}

From eq. (ii):-

\sf\blue{→1=\dfrac{k}{2}}

\sf\blue{→k=1\times2}

\sf\blue{→k=2}

\sf{\boxed{\boxed{\pink{→k=2✔}}}}

Hence the value of k(constant term) is 2 which is the required answer.

HOPE IT HELPS.

Similar questions