Math, asked by Brainliest202, 10 months ago

If4/5,a,2are three consecutive terms of A.P,find the value of a

Answers

Answered by ihrishi
1

Step-by-step explanation:

 \because \:  \frac{4}{5} , \: a, \: 2 \: are \: consecutive \:  \\ terms \: of \:  AP \\ \\  \therefore   \: their \: common  \: differences \\ will \: be \: equal. \\ \\ \therefore \: a - \frac{4}{5} = 2 - a \\  \\ \therefore \:  \frac{5a - 4}{5} = 2 - a \\  \\ \therefore \:  5a - 4= 5 \times (2 - a) \\  \\  \therefore \:  5a - 4= 10 - 5a \\  \\  \therefore \:  5a - 4= 10 - 5a \\  \\  5a + 5a = 10 + 4 \\  \\ \therefore \:  10a  = 14 \\  \\  \therefore \:a =  \frac{14}{10}  \\  \\ \huge \:   \red{\boxed{ \therefore \:a =  \frac{7}{5} }}

Answered by ElegantDoll
0

\Huge\bigstar\:\tt\underline\red{:ANSWER:}\\\\

\huge\mathscr\green{Given:-}

{\implies}\frac{4}{5},{a,2......}.

\huge\mathscr\red{:First Term:}

{\implies}{a= -\frac{4}{5}}

\large\mathscr\blue{:Common difference:}

{\implies}{d=a2-a1=a3-a2}

{\implies}{a-\frac{4}{5}=2-a}

{\implies}{a+a=\frac{2}{1}+}\frac{4}{5}

{\implies}{2a=\frac{10+4}{5}}

{\implies}{a=\frac{14}{5×2}}

{\huge{\boxed{\purple{\therefore{a=\frac{7}{5}}}}}}.

Similar questions