(ii) If (a+b)/(b+c) = (c+d)/(d+a), then prove that c=a or a+b+c+d=0.
Answers
Answered by
42
Question : -
If (a+b)/(b+c) = (c+d)/(d+a), then prove that c = a or a + b + c + d = 0
ANSWER
Given : -
(a+b)/(b+c) = (c+d)/(d+a)
Required to prove : -
- c = a
Proof : -
Let;
(a+b)/(b+c) = (c+d)/(d+a) = k
Here,
'k' is an constant of the ratio
So,
(a+b)/(b+c) = k
a+b = k(b+c)
a+b = bk + ck
a - c = bk - b
a - c = b(k - 1)
(a - c)/(b) = (k - 1) ....(1)
Similarly,
(c+d)/(d+a) = k
c+d = k(d+a)
c+d = dk + ak
c - a = dk - d
c - a = d(k-1)
(c - a)/(d) = (k-1) ...(2)
Compare 1 & 2
(a - c)/(b) = (c - a)/(d)
(a - c)d = (c - a)b
ad - cd = cb - ab
ad + ab = cb + cd
a(b + d) = c(b + d)
=> a = c
Similar questions