Math, asked by varshareddymettu26, 1 year ago

*ii)
If a :b:c=7:8:9, find cos A : cos B: cos C. ​

Answers

Answered by DhanyaDA
14

Given:

a:b:c=7:8:9

To find:

CosA:CosB:CosC

Explanation:

\sf In \bigtriangleup ABC ,a:b:c=7:8:9

\sf let\: a=7k,b=8k,c=9k

\boxed{\sf CosA:CosB:CosC=a(b^2+c^2-a^2):b(a^2+c^2-b^2):c(a^2+b^2-c^2)}

 \longrightarrow \: \sf \: a( {b}^{2}  +  {c}^{2}  -  {a}^{2} ) \\  \\  \longrightarrow \: \sf \: 7k( {(8k)}^{2}  +  {(9k)}^{2}  -  {(7k)}^{2}  \\  \\  \longrightarrow \: \sf \: 7k(64 {k}^{2}  + 81 {k}^{2}  - 49 {k}^{2} ) \\  \\  \longrightarrow \: \sf \: 7k(96 {k}^{2} ) = 672 {k}^{3}

 \longrightarrow \: \sf \: 8k( {(7k)}^{2}  +  {(9k)}^{2}  -  {(8k)}^{2} ) \\  \\  \longrightarrow \: \sf \: 8k(49 {k}^{2}  + 81 {k}^{2}  - 64 {k}^{2} ) \\  \\  \longrightarrow \: \sf \: 8k(66 {k}^{2} ) = 528 {k}^{3}

 \longrightarrow \: \sf \: 9k( {(7k)}^{2}  +  {(8k)}^{2}  -  {(9k)}^{2} ) \\  \\  \longrightarrow \: \sf \: 9k(49 {k}^{2}  + 64 {k}^{2}  - 81 {k}^{2} ) \\  \\   \longrightarrow \: \sf \: 9k(32 {k}^{2} ) = 288 {k}^{3}

\sf Ratio=672k^3:528k^3:288k^3

\longrightarrow \: \sf 672:528:288

 \longrightarrow \: \sf 336:264:144

 \longrightarrow \: \sf 168:132:72

 \longrightarrow \: \sf 84:66:36

 \longrightarrow \: \sf 42:33:18

 \longrightarrow \: \sf 14:11:6

\boxed{\sf CosA:CosB:CosC=14:11:16}

Answered by bmowlabee
0

Answer:

I think this might help u

Attachments:
Similar questions