Math, asked by krutiikachandnani, 1 month ago

ii) sin^2 (π/4-x) + sin^2( π/4+ x) = 1
( please give answer step by step )​

Answers

Answered by Anonymous
11

Answer:

Step-by-step explanation:

Metamorphic rocks were once igneous or sedimentary rocks, but have been changed (metamorphosed) as a result of intense heat and/or pressure within the Earth's crust. They are crystalline and often have a “squashed” (foliated or banded) texture.

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\: {sin}^{2}\bigg[\dfrac{\pi}{4} - x\bigg] +  {sin}^{2}\bigg[\dfrac{\pi}{4}  +  x\bigg]

On multiply and divide by 2, we get

\rm \:  =  \: \dfrac{1}{2}\bigg(2 {sin}^{2}\bigg[\dfrac{\pi}{4} - x\bigg] + 2 {sin}^{2}\bigg[\dfrac{\pi}{4} + x\bigg]\bigg)

We know,

\red{ \boxed{ \sf{ \: {2sin}^{2}x = 1 - cos2x}}} \\  \\ \red{ \boxed{ \sf{ \: {2cos}^{2}x = 1 + cos2x}}}

So, using these, Identities, we get

\rm \:  =  \: \dfrac{1}{2}\bigg(1 - cos\bigg[\dfrac{\pi}{2} - 2x\bigg]  + 1  -  cos\bigg[\dfrac{\pi}{2} + 2 x\bigg]\bigg)

Now, we know that,

\red{ \boxed{ \sf{ \:cos\bigg[\dfrac{\pi}{2} - x\bigg]  \: =  \: sinx}}} \\  \\ \red{ \boxed{ \sf{ \:cos\bigg[\dfrac{\pi}{2}  +  x\bigg]  \: = \:  -  \:  sinx}}}

So, using these results, we get

\rm \:  =  \: \dfrac{1}{2}\bigg(1 - sinx + 1 + sinx\bigg)

\rm \:  =  \: \dfrac{1}{2}\bigg(1 + 1\bigg)

\rm \:  =  \: \dfrac{1}{2}\bigg(2\bigg)

\rm \:  =  \: 1

Hence, Proved

Additional Information :-

\red{ \boxed{ \sf{ \:sin2x = 2sinxcosx}}}

\red{ \boxed{ \sf{ \:cos2x =  {2cos}^{2}x - 1}}}

\red{ \boxed{ \sf{ \:cos2x =  1 - {2sin}^{2}x}}}

\red{ \boxed{ \sf{ \:cos2x =   {cos}^{2}x  - {sin}^{2}x}}}

\red{ \boxed{ \sf{ \:sin2x =  \frac{2tanx}{1 +  {tan}^{2} x}}}}

\red{ \boxed{ \sf{ \:tan2x =  \frac{2tanx}{1  -   {tan}^{2} x}}}}

Similar questions