Math, asked by ashfaknawshad, 1 month ago

Implicit differentiation (steps needed)

 {2}^{x}  +  {x}^{y}  = 1
Find dy/dx​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

The given function is

\rm :\longmapsto\: {2}^{x} +  {x}^{y} = 1

Let we assume that,

\rm :\longmapsto\:u =  {2}^{x}

and

\rm :\longmapsto\:v=  {x}^{y}

So, given function can be rewritten as

\purple{\rm :\longmapsto\: \bf{ \: u + v = 1}}

On differentiating both sides w. r. t. x, we get

\purple{\rm :\longmapsto\: \bf{ \: \dfrac{d}{dx}u + \dfrac{d}{dx}v = \dfrac{d}{dx}1}}

\purple{\rm :\longmapsto\: \bf{ \: \dfrac{du}{dx} + \dfrac{dv}{dx} = 0 -  -  -  - (1)}}

Now, Consider

\rm :\longmapsto\:u =  {2}^{x}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}u = \dfrac{d}{dx} {2}^{x}

 \red{\bf :\longmapsto\:\dfrac{du}{dx} = {2}^{x} \: log2 -  -  -  - (2)}

Now, Consider

\rm :\longmapsto\:v=  {x}^{y}

Taking log on both sides, we get

\rm :\longmapsto\:logv=  log{x}^{y}

\rm :\longmapsto\:logv= y \:  logx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}logv=\dfrac{d}{dx} y \:  logx

\rm :\longmapsto\:\dfrac{1}{v}\dfrac{dv}{dx} = y\dfrac{d}{dx}logx \:  +  \: logx\dfrac{d}{dx}y

\rm :\longmapsto\:\dfrac{1}{v}\dfrac{dv}{dx} = y \times \dfrac{1}{x} \:  +  \: logx\dfrac{dy}{dx}

\rm :\longmapsto\: \dfrac{dv}{dx} =v\bigg[\dfrac{y}{x}  + logx\dfrac{dy}{dx} \bigg]

\rm :\longmapsto\: \dfrac{dv}{dx} = {x}^{y} \bigg[\dfrac{y}{x}  + logx\dfrac{dy}{dx} \bigg]

 \red{\rm :\longmapsto\:\dfrac{dv}{dx} =  {x}^{y - 1}y +  {x}^{y}logx\dfrac{dy}{dx} -  -  -  - (3)}

On substituting equation (2) and (3), in equation (1), we get

\rm :\longmapsto\: {2}^{x} \: log2 +  {x}^{y - 1}y +  {x}^{y}logx\dfrac{dy}{dx} = 0

\rm :\longmapsto\: {2}^{x} \: log2 +  {x}^{y - 1}y  =  - {x}^{y}logx\dfrac{dy}{dx}

\bf\implies \:\dfrac{dy}{dx} =  -  \: \dfrac{ {2}^{x}log2 +  {x}^{y - 1}y}{ {x}^{y}logx}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions