In a ΔABC, AB = BC = CA = 2 a and AD⊥BC. Prove that
(i) AD = a√3 (ii) Area (ΔABC) =√3a²
Answers
(i)
ΔABC is a equilateral triangle so BD=CD=a.
By The Pythagorean Theorem
In ΔABD, ∠D=90°
AB²=BD²+AD²
We know AB=2a and BD=a
4a²=a²+AD²
AD²=3a²
∴ AD=(√3)a
(ii)
ΔABC=(1/2)*AB*AD=(1/2)*2a*(√3)a=√3a
2 gets erased. Hence shown.
I need brainz XD
Step-by-step explanation:
GIVEN:AB = BC = CA = 2a
AD perpendicular BC
TO PROVE:AD = √3a and √3a²
AB = BC = CA. Therefore it is an equilateral triangle.
AD PERPENDICULAR BC
In ∆ABD
(AB)² = (BD)² + (AD)²
(2a)²=(a)² + (AD)² { AD PERPENDICULAR BC.So,
BD = BC/2
BD = 2a/2
BD = a }
4a² = a² + (AD)²
4a² -a² = (AD)²
3a² = (AD)²
AD = √3a²
AD = a√3
AREA OF AN EQUILATERAL TRIANGLE = √3/4a²
= √3/4(2a)²
= √3/4(4a²)
= √3a²
HOPE THIS HELP YOU
PLEASE FOLLOW ME