In a ∆ABC , angle ABC > 90° and AD perpendicular CB . prove that AC² = AB² + BC² + 2BC BD.
Answers
Answered by
44
Given A ∆ ABC in which /_ ABC > 90° and AD perpendicular ( CB produced ).
To prove :- AC² = AB² + BC² + 2 • BC • BD .
Proof :-
In ∆ ADB , /_ ADB = 90°
Therefore,
AB² = AD² + BD² ---------(1) [ By Pythagoras theroem]
In ∆ ADC , /_ ADC = 90°
Therefore,
AC² = AD² + CD² [ By Pythagoras theroem ]
=> AD² + ( BC + BD )² [ Since CD = ( BC + BD ) ]
=> AD² + ( BC² + BD² + 2•BC • BD )
=> ( AD² + BD² ) + ( BC² + 2 • BC • BD )
=> ( AB² + BC² + 2 BC BD ) [ Using (1) ]
To prove :- AC² = AB² + BC² + 2 • BC • BD .
Proof :-
In ∆ ADB , /_ ADB = 90°
Therefore,
AB² = AD² + BD² ---------(1) [ By Pythagoras theroem]
In ∆ ADC , /_ ADC = 90°
Therefore,
AC² = AD² + CD² [ By Pythagoras theroem ]
=> AD² + ( BC + BD )² [ Since CD = ( BC + BD ) ]
=> AD² + ( BC² + BD² + 2•BC • BD )
=> ( AD² + BD² ) + ( BC² + 2 • BC • BD )
=> ( AB² + BC² + 2 BC BD ) [ Using (1) ]
Answered by
5
ⓗⓔⓨ ⓕⓡⓘⓔⓝⓓ
ⓗⓔⓡⓔ ⓘⓢ ⓨⓞⓤⓡ
ⓐⓝⓢⓦⓔⓡ
=================================
⊙ In triangle ADB .. ADB = 90°
⊙ so, AB^2 = AD^2 + BD^2 .... Pythagoras theorm
In triangle ADC...
⊙
AC^2 = AD^2 + CD^2 ..... by Pythagoras theorm.
⊙ AD^2 + ( BC + BD ) ^2 ( since , CD = BC+BD )
⊙ AD^2 + ( BC^2 + BD^2 + 2* BC*BD )
⊙ AD^2 + BD^2 +( BC^2 +2 *BC*BD )
⊙ AB^2 + BC^2 + 2 BC * BD
ⓗⓔⓡⓔ ⓘⓢ ⓨⓞⓤⓡ
ⓐⓝⓢⓦⓔⓡ
=================================
⊙ In triangle ADB .. ADB = 90°
⊙ so, AB^2 = AD^2 + BD^2 .... Pythagoras theorm
In triangle ADC...
⊙
AC^2 = AD^2 + CD^2 ..... by Pythagoras theorm.
⊙ AD^2 + ( BC + BD ) ^2 ( since , CD = BC+BD )
⊙ AD^2 + ( BC^2 + BD^2 + 2* BC*BD )
⊙ AD^2 + BD^2 +( BC^2 +2 *BC*BD )
⊙ AB^2 + BC^2 + 2 BC * BD
Similar questions