Math, asked by charitarth2995, 11 months ago

In a Δ ABC, P and Q are respectively the mid-point of AB and BC and R is the mid-point of AP. Prove that:
(i) ar(Δ PBQ) = ar(Δ ARC)
(ii) ar(Δ PQR) = 1/2 ar(Δ ARC)
(iii) ar(Δ RQC) = 3/8 ar(Δ ABC)

Answers

Answered by nikitasingh79
2

Given : In a Δ ABC, P and Q are respectively the mid-point of AB and BC and R is the mid-point of AP.  

 

To Prove :

(i) ar(Δ PBQ) = ar(Δ ARC)

(ii) ar(Δ PQR) = 1/2 ar(Δ ARC)

(iii) ar(Δ RQC) = 3/8 ar(Δ ABC)

 

Proof :  

 (i) We know that each median of a triangle divides it into two triangles of equal area.

Since, CR is a median of ΔCAP

∴ ar (ΔCRA) = ar (ΔCAP) ………..(i)

Also, CP is a median of ΔCAB .

∴ar (ΔCAP) = ar (ΔCPB) ……..(ii)

From eq (i) and (ii), we get

∴ ar (ΔARC) = ½ ar (ΔCPB) ……... (iii)

PQ is a median of ΔPBC.

∴ ar (ΔCPB) = 2 ar (ΔPQB) ……….. (iv)

From eq (iii) and (iv), we get,

ar (ΔARC) = ar (ΔPBQ) …………...(v)

(ii) Since QP and QR medians of Δ's QAB and QAP .

∴ ar (ΔQAP) = ar (ΔQBP) ………….(vi)

and, ar (ΔQAP) = 2 ar (ΔQRP) ……...(vii)

 

From eq (vi) and (vii), we get,  

ar (ΔPRQ) = 1/2ar (ΔPBQ) ………..(viii)

From eq (v) and (viii), we get,  

ar (ΔPRQ) = ½ ar (ΔARC) ………..(ix)

(iii) Since CR is a median of ΔCAP.

∴ ar (ΔARC) = ½ ar (ΔCAP)

= ½ × {½ ar (ΔABC)}  

(∵ CP is a median of Δ ABC)

ar (ΔARC) = ¼ ar (ΔABC) ………... (x)

Since, RQ is a median of Δ RBC.

∴ ar (ΔRQC) = 1/2  ar (ΔRBC)

= ½ [ar (ΔABC) – ar (ΔARC)]

= ½  [ar (ΔABC) - ¼ ar (∆ABC)]

[From eq (x) ]

= ½ [ar (ΔABC) (1- ¼)]

= ½ [ar (ΔABC) (¾ )]

= ½ × ¾ ar (ΔABC)

ar (ΔRQC) = ⅜ ar (ΔABC)

Hence proved….

HOPE THIS ANSWER WILL HELP YOU…..

 

Similar questions :

Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that: ar(Δ APB) × ar(Δ CPD) = ar(Δ APD) × ar(Δ BPC).

https://brainly.in/question/15909759

 

D is the mid-point of side BC of Δ ABC and E is the mid-point of BD. If O is the mid-point of AE, prove that ar(ΔBOE) = 1/8 ar(Δ ABC)

https://brainly.in/question/15909771

Attachments:
Answered by SweetCandy10
4

Answer:-

Given :

In a Δ ABC, P and Q are respectively the mid-point of AB and BC and R is the mid-point of AP.  

 

To Prove :

(i) ar(Δ PBQ) = ar(Δ ARC)

(ii) ar(Δ PQR) = 1/2 ar(Δ ARC)

(iii) ar(Δ RQC) = 3/8 ar(Δ ABC)

 

Proof :  

 (i) We know that each median of a triangle divides it into two triangles of equal area.

Since, CR is a median of ΔCAP

∴ ar (ΔCRA) = ar (ΔCAP) ………..(i)

Also, CP is a median of ΔCAB .

∴ar (ΔCAP) = ar (ΔCPB) ……..(ii)

From eq (i) and (ii), we get

∴ ar (ΔARC) = ½ ar (ΔCPB) ……... (iii)

PQ is a median of ΔPBC.

∴ ar (ΔCPB) = 2 ar (ΔPQB) ……….. (iv)

From eq (iii) and (iv), we get,

ar (ΔARC) = ar (ΔPBQ) …………...(v)

(ii) Since QP and QR medians of Δ's QAB and QAP .

∴ ar (ΔQAP) = ar (ΔQBP) ………….(vi)

and, ar (ΔQAP) = 2 ar (ΔQRP) ……...(vii)

 

From eq (vi) and (vii), we get,  

ar (ΔPRQ) = 1/2ar (ΔPBQ) ………..(viii)

From eq (v) and (viii), we get,  

ar (ΔPRQ) = ½ ar (ΔARC) ………..(ix)

(iii) Since CR is a median of ΔCAP.

∴ ar (ΔARC) = ½ ar (ΔCAP)

= ½ × {½ ar (ΔABC)}  

(∵ CP is a median of Δ ABC)

ar (ΔARC) = ¼ ar (ΔABC) ………... (x)

Since, RQ is a median of Δ RBC.

∴ ar (ΔRQC) = 1/2  ar (ΔRBC)

= ½ [ar (ΔABC) – ar (ΔARC)]

= ½  [ar (ΔABC) - ¼ ar (∆ABC)]

[From eq (x) ]

= ½ [ar (ΔABC) (1- ¼)]

= ½ [ar (ΔABC) (¾ )]

= ½ × ¾ ar (ΔABC)

ar (ΔRQC) = ⅜ ar (ΔABC)

Hence proved….

Hope it's help You❤️

Similar questions