Math, asked by chiragkaushik90, 8 months ago

In a binomial distribution , p=1/2,q=1/2, n =6. Then p(x=2)is

Answers

Answered by MaheswariS
0

\underline{\textsf{Given:}}

\textsf{In a binomial distribution,}

\mathsf{n=6,\;p=\dfrac{1}{2},\;q=\dfrac{1}{2}}

\underline{\textsf{To find:}}

\mathsf{P(X=2)}

\underline{\textsf{Solution:}}

\textsf{Concept used:}

\textsf{The probability mass function of binomial distribution is}

\mathsf{P(X=x)=\,_nC_x\;p^x\;q^{n-x}\;\;x=0,1,2.......n}

\textsf{Now}

\mathsf{P(X=2)}

\mathsf{=\,_6C_2\,(\dfrac{1}{2})^2\,(\dfrac{1}{2})^4}

\mathsf{=\dfrac{6{\times}5}{1{\times}2}\,(\dfrac{1}{2})^6}

\mathsf{=3{\times}5\,(\dfrac{1}{2})^6}

\mathsf{=\dfrac{15}{64}}

\implies\boxed{\mathsf{P(X=2)=\dfrac{15}{64}}}

Answered by pulakmath007
10

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

 \displaystyle \sf{ In \:  a  \: binomial \:distribution \: \: p =  \frac{1}{2} \:  ,  \: q =  \frac{1}{2}  \: , \: n = 6  }

TO DETERMINE

 \sf{P(X=2)}

FORMULA TO BE IMPLEMENTED

If a trial is repeated n times and p is the probability of a success and q that of failure then the probability of r successes is

 \displaystyle \sf{  \sf{P(X=r) =  \:  \: }\large{ {}^{n} C_r}\:  {p}^{r}  \:  \:  {q}^{n - r} } \:  \:  \:  \:  \: where \: q \:  = 1 - p

CALCULATION

It is given that

 \displaystyle \sf{ In \:  a  \: binomial \:distribution \: \: p =  \frac{1}{2} \:  ,  \: q =  \frac{1}{2}  \: , \: n = 6  }

Hence

 \displaystyle \sf{  \sf{P(X=2) =  \:  \: }\large{ {}^{6} C_2}\:  {p}^{2}  \:  \:  {q}^{6 - 2} } \:  \:

 \displaystyle \sf{  = \large{ {}^{6} C_2}\:  { \bigg(  \frac{1}{2} \bigg)}^{2}  \:  \:  { \bigg(1 -  \frac{1}{2}  \bigg)}^{6 - 2} } \:  \:

 \displaystyle \sf{  = \frac{6 \:! }{2 \: ! \:  \times \: 4 \:!  }   \:  \: { \bigg(  \frac{1}{2} \bigg)}^{2}  \:  \:  { \bigg(1 -  \frac{1}{2}  \bigg)}^{6 - 2} } \:  \:

 \displaystyle \sf{  =  \frac{6 \times 5}{2} \:  \times  { \bigg(  \frac{1}{2} \bigg)}^{2}  \:  \:  { \bigg( \frac{1}{2}  \bigg)}^{4} } \:  \:

 \displaystyle \sf{  = 15 \times  { \bigg(  \frac{1}{2} \bigg)}^{6}  \:  \:   } \:  \:

 \displaystyle \sf{  =  \frac{15}{64}   } \:  \:

RESULT

 \boxed{  \:  \:  \: \sf{P(X=2)} \displaystyle \sf{  \:  \:  \:  = \:  \:   \frac{15}{64}   } \:  \:  \: }

━━━━━━━━━━━━━━━━

━━━━━━━━━━━━━━━━LEARN MORE FROM BRAINLY

Find the probability of getting 5 exactly twice in 7 throws of a dice

https://brainly.in/question/3632654

Similar questions