Math, asked by BloomingRose05, 3 months ago

in a parallelogram ABCD, if angle A= (3x+12)° l, angle B= (2x-32)°, then find the value of x and measure of angle C and ​

Answers

Answered by nihaltamboli37
82

Step-by-step explanation:

ABCD is parallelogram

<A&<B are complementary angles

therefore <A+<B=90°

3x+12°+2x-32°=90°

5x-20=90

5x=90+20

5x=110

x=22

<A=<c

3x+12°

3x22+12°

78

<c=78°

Answered by kailashmannem
62

 \Large{\bf{\green{\mathfrak{\dag{\underline{\underline{Given:-}}}}}}}

  • Parallelogram ABCD,  \sf \angle A = (3x + 12)°,  \sf \angle B = (2x - 32)°

 \Large{\bf{\orange{\mathfrak{\dag{\underline{\underline{To \: Find:-}}}}}}}

  • Value of x, measure of  \sf \angle C \: and \: \angle D

\Large{\bf{\red{\mathfrak{\dag{\underline{\underline{Solution:-}}}}}}}

  • What do we know about a parallelogram?

  • We know that,

Opposite angles are equal.

Adjacent angles add upto 180°.

  • Here,  \sf \angle A \: and \: \angle B are adjacent angles.

Therefore,

  •  \sf \angle A \: + \: \angle B \: = \: 180^{\circ}

Substituting the values,

  • (3x + 12)° + (2x - 32)° = 180°

  • 3x° + 12° + 2x° - 32° = 180°

  • 5x° - 20° = 180°

  • 5x° = 180° + 20°

  • 5x° = 200°

  •  \sf x^{\circ} \: = \: \dfrac{200^{\circ}}{5}

  •  \sf x^{\circ} \: = \: \dfrac{\cancel{200^{\circ}}}{\cancel{5}}

  •  \boxed{\pink{\sf x^{\circ} \: = \: 40^{\circ}}}

  • Now, we have found out the value of x°.

  • Now,

  • Let's find the values of  \sf \angle A \: and \: \angle B

 \sf \angle A =

  • (3x + 12)°

  • (3 * 40 + 12)°

  • 120° + 12°

  • 132°

 \sf \angle B =

  • (2x - 32)°

  • (2 * 40 - 32)°

  • 80° - 32°

  • 48°

We know that,

  •  \sf \angle A \: = \: \angle C (Opposite angles)

  •  \sf \angle A \: = \: \angle C = 132°

  •  \sf \angle B \: = \: \angle D (Opposite angles)

  •  \sf \angle B \: = \: \angle D = 48°

Therefore,

  • x° = 40°

  •  \sf \angle C = 132°

  •  \sf \angle D = 48°
Attachments:
Similar questions