In a progression,If Tn=2n Ray's to 2+1,then s2 is,
Answers
Answered by
0
Put n=1 in (1), we get,
a1=2(1)2+1
∴a1=2+1
∴a1=3
Put n=2 in (1), we get,
a2=2(2)2+1a2
=2(4)+1
∴a2=9
Thus, d=a2−a1
∴d=9−3
∴d=6
Now, sum of n terms of A.P. is,
Sn=2n
[2a+(n−1)d]
Put n=2 in above equation, we get,
S2=22
[2a+(2−1)d]
∴S2=1[(2×3)+(1×6)]
∴S2=1[6+6]
∴S2=12
Put n=1 in (1), we get,
a1=2(1)2+1
∴a1=2+1
∴a1=3
Put n=2 in (1), we get,
a2=2(2)2+1a2
=2(4)+1
∴a2=9
Thus,d=a2−a1
∴d=9−3
∴d=6
Now, sum of n terms of A.P. is,
Sn=2n
[2a+(n−1)d]
Put n=2 in above equation, we get,
S2=22[2a+(2−1)d]
∴S2=1[(2×3)+(1×6)]
∴S2=1[6+6]
∴S2=12
Similar questions
Math,
3 months ago
English,
3 months ago
English,
3 months ago
Political Science,
8 months ago
Math,
1 year ago
Social Sciences,
1 year ago