Math, asked by savageri, 7 months ago

In a quadrilateral PQRS, the bisectors of angle R and angle S
meet at O point T. Show that angle P + angle Q = 2 angle RTS.

Answers

Answered by hanshu1234
5

Step-by-step explanation:

We know that sum of interior angles of quadrilateral is 360o

∠P+∠Q+∠R+∠S=360o

∠P+∠Q+100+50=360

∠P+∠Q=210o ……………..(1)

OP and OQ are bisectors of angles P and Q,

∠P=2∠OPQ and ∠Q=2∠OQP

So from (i), we have

2∠OPQ+2∠OQP=210o

2(∠OPQ+∠OQP)=210o

∠OPQ+∠OQP=105o …………….(2)

Consider triangle POQ,

∠POQ+∠OPQ+∠OQP=180o

∠POQ+105o=180o [using equation (3)]

∠POQ=180o−105o

∠POQ=75o.

Answered by TheFairyTale
24

Given :-

  • PQRS is a quadrilateral.
  • The bisectors of ∠R and ∠S meet at point T

To Prove :-

  • ∠P + ∠Q = 2 ∠RTS

Diagram :-

\setlength{\unitlength}{1cm}\begin{picture}(20,15)\thicklines\qbezier(1,1)(1,1)(7,1)\qbezier(1,1)(1,1)(0,4)\qbezier(7,1)(7,1)(6,4)\qbezier(6,4)(6,4)(0,4)\qbezier(6,4)(6,4)(3.7,2.5)\qbezier(0,4)(0,4)(3.7,2.5)\put(1,0.5){\large\sf P}\put(7,0.5){\large\sf Q}\put(5.8,4.3){\large\sf R}\put(-0.3,4.3){\large\sf S}\put(3.6,2){\large\sf T}\end{picture}

 \boxed {\star{ \underline{ \red{ \sf \: Solution :-}}}}

 \sf \:  In \:  \triangle \: STR, we \:  have,

  \sf\angle STR \:  +  \angle \: TRS \:  +  \angle \: TSR  = 180 \degree

 \implies \:   \sf\angle STR \: = 180 \degree \:  - \sf (  \angle \: TRS \:  +  \angle \: TSR)

 \implies \: \sf\angle STR \: = 180 \degree \:  - \sf (   \dfrac{1}{2} \angle \: R \:  +   \dfrac{1}{2} \angle \: S)

 \implies \sf\angle STR \: = 180 \degree  - \dfrac{1}{2} (  \angle \: R \:  +    \angle \: S)

 \implies \sf\angle STR  = 180 \degree   -  \dfrac{1}{2} [360 \degree -  ( \angle \: P \:  +  \angle \: Q)]

\implies \sf\angle STR \: = 180 \degree \:  - 180 \degree + \dfrac{1}{2}  (  \angle \: P \:  +    \angle \: Q)

\implies \sf\angle STR \: =   \dfrac{1}{2}  (    \angle \: P \:  +    \angle \: Q)

\implies \sf2\angle STR \: =    (    \angle \: P \:  +    \angle \: Q)

 \sf \:  \therefore \:  (    \angle \: P \:  +    \angle \: Q) = \sf2\angle STR \: (proved)

Similar questions