In a right Angeled Triangle right angled at A, D is any point on AB. Then prove that
DC² = BC² + BD² -2AB.BD
ALIBHA:
hlo
Answers
Answered by
58
As the given triangle is a tight angled triangle.
By Pythagoras Theorem,
In ∆ABC,
BC² = AB² + AC² ----: ( 1 )
In ∆ADC,
= > DC² = ( AD )² + AC²
= > DC² = ( AB - BD )² + AC²
= > DC² = AB² + BD² - 2AB.BD + AC² ----: ( 2 )
Now, subtract ( 1 ) from ( 2 ),
= > DC² - BC² = AB² + BD² - 2AB.BD + AC² - AB² - AC²
= > DC² - BC² = BD² - 2AB.BD
= > DC² = BD² + BC² - 2AB.BD.
Hence, proved.
By Pythagoras Theorem,
In ∆ABC,
BC² = AB² + AC² ----: ( 1 )
In ∆ADC,
= > DC² = ( AD )² + AC²
= > DC² = ( AB - BD )² + AC²
= > DC² = AB² + BD² - 2AB.BD + AC² ----: ( 2 )
Now, subtract ( 1 ) from ( 2 ),
= > DC² - BC² = AB² + BD² - 2AB.BD + AC² - AB² - AC²
= > DC² - BC² = BD² - 2AB.BD
= > DC² = BD² + BC² - 2AB.BD.
Hence, proved.
Answered by
62
A triangle in which right angled at A.
D is a point on AB.
DC² = BC² + BD² - 2AB.BD.
In ∆ABC
By Pythagoras theorem...
BC² = AC² + AB²
AC² = BC² - AB² ...... (1)
In ∆ADC
DC² = AD² + AC²
We can write AD as AB - BD.
So,
DC² = (AB - BD)² + AC²
DC² = AB² + BD² - 2AB.BD + AC² ...... (2)
Put value of (1) in (2)
Then,
DC² = AB² + BD² - 2AB.BD + BC² - AB²
DC² = BC² + BD² - 2AB.BD
Hence, Proved...
====================================
Attachments:
Similar questions