In a right angled triangle ABC , right angled at B , points D & E divides BC BA respectively in the ratio 2:1 . Prove that 9 AD^2 + 9CE^2= 13 AC^2
Answers
Answered by
8
Question:
In a right-angled triangle ABC, right-angled at B, points D & E divides BC & BA respectively in the ratio 2:1. Prove that 9AD²+ 9CE² = 13AC²
Solution:
(Figure attached for reference)
Given:
In a ΔABC,
∠B = 90°
BD : DC = 2 : 1
BE : EA = 2 : 1
To Prove:
9AD²+ 9CE² = 13AC²
Proof:
ATQ, D & E divides BC & BA respectively in the ratio 2:1, Therefore,
Similarly,
In ΔABD
∠B = 90°
By using Pythagoras Theorem we get;
In ΔEBC
∠B = 90°
By using Pythagoras Theorem we get;
Adding equation 1 and 2 we get,
⇒ 9AD² + 9EC² = 9AB² + 4BC² + 4AB² + 9BC²
⇒ 9AD² + 9EC² = 13AB² + 13BC²
⇒ 9AD² + 9EC² = 13(AB² + BC²)
ATQ to Pythagoras Theorem, AB² + BC² = AC²
⇒ 9AD² + 9EC² = 13AC²
Hence Proved!
(Refer to the attachment for markings)
Hope you understood! (◕‿◕)
Attachments:

Similar questions