Physics, asked by prabhakarakgp777, 8 months ago

In a smooth hemispherical shell of radius R, a rod of mass 2kg is placed horizontally and is in equilibrium. The length of rod is . Find the normal reaction at any end of the rod (in N). ​

Answers

Answered by thulavenu3579
0

In a smooth hemispherical shell of radius R, a rod of mass 2 kg is placed horizontally and to equilibrium. The length of rod is R . Find the normal reaction at any end of the rod (in N ). [ Take g=10m/s ^2  ]

The normal reaction at any end of the rod is \frac{20}{\sqrt{3} } N.

Given:

Mass=2kg

g=10 m/s^2

To Find:

The normal reaction at any end of the rod.

Solution:

The Force acting at the end of the rod is given by

F=mg/2

F=2*10/2

F=10 N

The normal reaction is

F=NSin60

N=F/Sin60

N=\frac{10}{\frac{\sqrt{3} }{2} } \\N=\frac{20}{\sqrt{3} }

Therefore,the normal reaction at any end of the rod is \frac{20}{\sqrt{3} } N.

Answered by DeenaMathew
0

In a smooth hemispherical shell of radius R, a rod of mass 2 kg is placed horizontally and to equilibrium. The length of the rod is R. Find the normal reaction at any end of the rod (in N). [ Take g=10m/s^2 ].

The normal reaction at the end of the rod is 20/3 N.

Given:

A smooth hemispherical shell of radius R, a rod of mass 2 kg is placed horizontally and to equilibrium. The length of the rod is R.

To Find:

The normal reaction at any end of the rod (in N).

Solution:

To find the normal reaction at any end of the rod we will follow the following steps:

As we know,

The force at the end of the rod =

 \frac{mg}{2}  =  \frac{2 \times 10}{2}  = 10N

Here, m is the mass of road.

N×sin60° is the vertical component of normal reaction.

The normal reaction produced at end of the rod = N×sin60° =

N \frac{ \sqrt{3} }{2}  =  \frac{ \sqrt{3} }{2} N

Here, N is the normal reaction produced by the road and sin60° is

 \frac{ \sqrt{3} }{2}

As the forces are equal and opposite,

Normal reaction = force at the end of the road

\frac{ \sqrt{3} }{2} N = 10

N =  \frac{20}{ \sqrt{3} }

Henceforth, the normal reaction at the end of the rod is 20/√3 N.

#SPJ3

Similar questions