in a triangle abc , bd and ce are perpendicular to the sides ac and ab respectively. if bd and ce intersect at i prove that: ∆bic =180-∆a
Answers
Answered by
1
In triangle ABC,□A+□B+□C=180°(angles sum property)
□B+□C=180°-□A ...........(1)
In triangle OBC,□BOC+□OBC+□OCB=180°(angles sum property)
□OBC+□OCB =180°-□BOC ..........(2)
Now, In triangle BEC
□BEC+□CBE+□BCE=180°
90°+□CBE+□BCE=180°
□CBE+□BCE=90°............(3)
Similarly,In triangle BCD
□BCD+□DBC =90°............(4)
Adding (3) and (4),we get
□CBE+□BCE+□BCD+□DBC=180°
□B+□OCB+□C+□OBC=180°
□B+□C+□OCB+□OBC=180°
180°-□A+180°-□BOC=180° (from 1 and 2 )
□A=180°-□BOC ........Proved
□B+□C=180°-□A ...........(1)
In triangle OBC,□BOC+□OBC+□OCB=180°(angles sum property)
□OBC+□OCB =180°-□BOC ..........(2)
Now, In triangle BEC
□BEC+□CBE+□BCE=180°
90°+□CBE+□BCE=180°
□CBE+□BCE=90°............(3)
Similarly,In triangle BCD
□BCD+□DBC =90°............(4)
Adding (3) and (4),we get
□CBE+□BCE+□BCD+□DBC=180°
□B+□OCB+□C+□OBC=180°
□B+□C+□OCB+□OBC=180°
180°-□A+180°-□BOC=180° (from 1 and 2 )
□A=180°-□BOC ........Proved
Similar questions