Math, asked by 169003, 1 month ago

In a triangle ABC, vertices A, B and C are (0, 0), (0, 2) and (3, 0) respectively. The area of triangle ABC is​

Answers

Answered by golisettideepika02
0

Answer:

3

Step-by-step explanation:

=1/2 |x1(y2-y3)+x2(y3-y1)+x3(y1-y2)|

=1/2 |0(2-0)+0(0-0)+3(0-2)|

=1/2 |0+0+3(-2)|

=1/2 |-6|

=1/2 (6)

=3 square units

Answered by SachinGupta01
5

\bf \underline{ \underline{\maltese\:Given} }

\sf Vertices \: of \: the \: \triangle \:ABC\: are :

\sf\implies(0, 0)

\sf\implies (0, 2)

\sf\implies(3, 0)

\bf \underline{ \underline{\maltese\:To \:  find } }

 \sf \implies Area \:  of \:  \triangle \:  ABC =  \: ?

\bf \underline{ \underline{\maltese\:Solution  } }

\bf Area \: of \: triangle =

\underline{\boxed{ \sf \dfrac{1}{2}\ \times\ \bigg[x_1\bigg(y_2\ -\ y_3\bigg)\ +\ x_2\bigg(y_3\ -\ y_1\bigg)\ +\ x_3\bigg(y_1\ -\ y_2\bigg)\bigg]}}

\bf \underline{Where},

\implies \sf{x_1 =0 }

\implies \sf{x_2 = 0}

\implies \sf{x_3 =3 }

\implies \sf{y_1 =0 }

\implies \sf{y_2 = 2}

\implies \sf{y_3 =0 }

\bf \underline{Now},

\sf Substitute \: the \: values,

 \sf \dfrac{1}{2}\ \times\ \bigg| \: 0\bigg(2\ -\ 0\bigg)\ +\ 0\bigg(0\ -\ 0\bigg)\ +\ 3\bigg(0\ -\ 2\bigg) \: \bigg|

 \sf \dfrac{1}{2}\ \times\ \bigg| \:0(2)\ +\ 0(0)\ +\ 3(- 2)\: \bigg|

 \sf \dfrac{1}{2}\ \times\ \bigg| \:0\ +\ 0\ +\  (- 6)\: \bigg|

 \sf \dfrac{1}{2}\ \times\ \bigg| \:0\ +\ 0\ - 6\: \bigg|

 \sf \dfrac{1}{2}\ \times\ \bigg| \: - 6\: \bigg|

\sf \dfrac{1}{2}\ \times 6 = \cancel{\dfrac{ 6}{2}} =  3

\underline{ \boxed{ \red{ \bf So, area \: of \: triangle \: is} \bf    \:  \:   3 \:  \:  \red{ square \: units. }}}

Similar questions