Math, asked by bisht1439, 1 year ago

in a triangle if b=20 c= 21 and sinA=3/5 find a ?

Answers

Answered by roshinik1219
3

Given:

  • In a triangle b=20 , c= 21 and sin \ A = \frac{3}{5}

To Find:

  • Value of a

Solution:

Cos A = 4/5      

     Sin^2 x + Cos^2 x = 1

    cos^2 x = 1 - sin^2x\\

⇒      cos^2 x = 1 - ({\frac{3}{5} })^2   \\

        cos^2 x = 1 - \frac{9}{25}\\ Cos x = \frac{4}{5}

In a triangle,

⇒         a^2 = b^2 + c^2 - 2bc \times cos \ A

 putting the values, we get

    ⇒          a^2 = (20)^2 + (21)^2 - 2 \times 20 \times 21 \times cos \ A

    ⇒          a^2 = 400 + 441 - 2 20 \times 21 \times \frac{4}{5}

    ⇒          a^2 = 841 - 672

    ⇒          a^2= 169

    ⇒          a = 13

Thus, the value of a = 13

Similar questions