In an AP, if Sn = 3n2 + 5n and ak = 164, find the value of k.
Answers
Answered by
731
Solution:-
Given: Sn = 3n² + 5n
S₁ = 3(1)² + 5(1)
= 3 + 5
T₁ = 8
S₂ = 3(2)² + 5(2)
= 12 + 10
= 22
So, T₁ + T₂ = 22
8 + T₂ = 22
T₂ = 22 - 8
T₂ = 14
Now,
a = 8 and d = 14 - 8 = 6
As ak = 164
or a + (k-1)d = 164
8 + (k-1)6 = 164
6k - 6 = 164 - 8
6k = 164 + 6 - 8
6k = 162
k = 162/6
k = 27
Answer.
Given: Sn = 3n² + 5n
S₁ = 3(1)² + 5(1)
= 3 + 5
T₁ = 8
S₂ = 3(2)² + 5(2)
= 12 + 10
= 22
So, T₁ + T₂ = 22
8 + T₂ = 22
T₂ = 22 - 8
T₂ = 14
Now,
a = 8 and d = 14 - 8 = 6
As ak = 164
or a + (k-1)d = 164
8 + (k-1)6 = 164
6k - 6 = 164 - 8
6k = 164 + 6 - 8
6k = 162
k = 162/6
k = 27
Answer.
Answered by
216
Solution:-
Given: Sn = 3n² + 5n
S₁ = 3(1)² + 5(1)
= 3 + 5
T₁ = 8
S₂ = 3(2)² + 5(2)
= 12 + 10
= 22
So, T₁ + T₂ = 22
8 + T₂ = 22
T₂ = 22 - 8
T₂ = 14
Now,
a = 8 and d = 14 - 8 = 6
As ak = 164
or a + (k-1)d = 164
8 + (k-1)6 = 164
6k - 6 = 164 - 8
6k = 164 + 6 - 8
6k = 162
k = 162/6
k = 27
Answer.
Similar questions
Computer Science,
8 months ago
Social Sciences,
8 months ago
English,
1 year ago
Physics,
1 year ago