In an AP, if Sn = n (4n + 1), find the AP.?
seenvasreddy:
plzz explain the first step clearly
Answers
Answered by
218
given ,
Sn =n ( 4n + 1 )
=4n^2 + n
we know ,
Tn = Sn - S(n-1)
=4n^2+n -4 (n-1)^2 - (n-1)
=4 (n^2-n^2+2n-1)+(n-n+1)
=8n - 4 + 1
= 8n -3
hence ,
Tn = 8n -3
T1 =8 (1)-3 =5
T2= 8 (2)-3 =13
-----------
-------------
so, AP is 5, 13 , 21 ,...
Sn =n ( 4n + 1 )
=4n^2 + n
we know ,
Tn = Sn - S(n-1)
=4n^2+n -4 (n-1)^2 - (n-1)
=4 (n^2-n^2+2n-1)+(n-n+1)
=8n - 4 + 1
= 8n -3
hence ,
Tn = 8n -3
T1 =8 (1)-3 =5
T2= 8 (2)-3 =13
-----------
-------------
so, AP is 5, 13 , 21 ,...
Answered by
157
Hope this helps you...
Attachments:
Similar questions