Math, asked by M4ahendSandr1a, 1 year ago

In an examination 150 students appeared and their marks( out of 200) are given in the following distribution . Find the missing frequencies x and y, where it is given that mean mark is 103. Marks 0-25 25-50 50-75 75-100 100-125 125-150 150-175 175-200 No of std. 2 10 x 30 y 15 12 21

Answers

Answered by jaya8717
34
Class interval         Mid value Xi       Frequency Fi         XiFi   
0 - 25                           12.5                      2                      25
25 - 50                         37.5                     10                     375
50 - 75                         62.5                       x                     62.5x
75 - 100                       87.5                      30                    2625
100 - 125                     112.5                     y                     112.5y
125 - 150                     137.5                    15                   2062.5
150 - 175                     162.5                    12                   1950
175 - 200                     187.5                    21                   3937.5
                                                                 ___            ________________
                                                             90+x+y        10975 + 62.5x + 112.5y

90 + x + y = 150
x + y = 60   or x = 60 - y          -------        eqn (1)
Mean = ∑XiFi/∑Fi
103 = 10975 + 62.5x + 112.5y/150
103 x 150 = 10975 + 62.5x + 112.5y
15450 - 10975 = 62.5x + 112.5y
4475 = 62.5x + 112.5y
substituting value of x from eqn (1), we get
4475 = 62.5 (60-y) + 112.5y
4475 = 3750 - 62.5y + 112.5y
725 = 50y
y = 14.5
∴ x = 60 - y
x = 60 - 14.5
x = 45.5
missing frequencies are x = 45.5 and y = 14.5


Answered by arshdeepmalhotra235
0

Answer:

above is absolutely correct

Step-by-step explanation:

.

.

.

.

Similar questions