Math, asked by jheelam, 1 year ago

in any triangle ABC if sinA: sinB:sinC is equal to 4: 5: 6 then prove that cos A :cosB is: cosC =12:9:2

Attachments:

Answers

Answered by paraskakkarlovp1ep4n
2


0

Home»Forum»Trigonometry»trignometric identites

In triangle ABC prove that  cosA+cosB+cosC is always positive

7 years ago

Answers : (1)

cosA+cosB+cosC=1+4sin(a/2)sin(b/2)sinc(c/2)


.. LHS

= ( cos A + cos B ) + cos C

= { 2 · cos[ ( A+B) / 2 ] · cos [ ( A-B) / 2 ] } + cos C

= { 2 · cos [ (π/2) - (C/2) ] · cos [ (A-B) / 2 ] } + cos C

= { 2 · sin( C/2 ) · cos [ (A-B) / 2 ] } + { 1 - 2 · sin² ( C/2 ) }

= 1 + 2 sin ( C/2 )· { cos [ (A -B) / 2 ] - sin ( C/2 ) }

= 1 + 2 sin ( C/2 )· { cos [ (A-B) / 2 ] - sin [ (π/2) - ( (A+B)/2 ) ] }

= 1 + 2 sin ( C/2 )· { cos [ (A-B) / 2 ] - cos [ (A+B)/ 2 ] } 

= 1 + 2 sin ( C/2 )· 2 sin ( A/2 )· sin( B/2 ) ... ... ... (2)

= 1 + 4 sin(A/2) sin(B/2) sin(C/2)

= RHS ..


jheelam: This is not the answer to the question I asked.I'm sorry to say.
Similar questions