In any triangle abc prove that cosa/a + cosb/b + cosc/c = (a^2+b^2+c^2)/2abc
Answers
Answered by
53
Answer:
Simple amplification of Cosine law.
Step-by-step explanation:
To solve this we will be using cosine law of triangles.
By cosine law of triangles we have:
c^2 = a^2 + b^2 − 2ab cos(C)
cos(C) = (c^2 - a^2 - b^2) / (-2ab) -->
--> cos(C) = (a^2 + b^2 - c^2)/2ab
-Okay so we will use this for each angle respectively, and we get:
cos(A) = (b^2 + c^2 - a^2)/2bc
cos(B) = (a^2 + c^2 - b^2)/2ac
cos(C) = (a^2 + b^2 - c^2)/2ab
cos(A)/a + cos(B)/b + cos(C)/c = (b^2 + c^2 - a^2)/2abc + (a^2 + c^2 - b^2)/2abc + (a^2 + b^2 - c^2)/2abc = (b^2 + c^2 - a^2 + a^2 + c^2 - b^2 + a^2 + b^2 - c^2)/2abc = (a^2 + b^2 + c^2)/2abc .
Answered by
89
we know from properties of triangle.
Similar questions