Math, asked by bharath5104214, 3 months ago

in area of eqalateral traingle is 9√3 cm² then the perimeter is ​

Answers

Answered by Blossomfairy
5

Given :-

  • Area of equilateral triangle = 9√3 cm²

To find :-

  • Perimeter of equilateral triangle.

According to the question,

  : \implies \sf{Area \: of \: equilateral \:  \triangle =  \dfrac{ \sqrt{3} }{4}  {a}^{2} } \\   \\ :  \implies \sf{9 \sqrt{3}  =  \frac{ \sqrt{3} }{4} {a}^{2}  } \\   \\  :\implies \sf{9 \sqrt{3} \times 4 =  \sqrt{3}  {a}^{2}  } \\  \\   : \implies \sf {36 \sqrt{3} =  \sqrt{3}  {a}^{2}  } \\  \\   : \implies \sf{ \frac{36  \sqrt{3} }{ \sqrt{3} } =  {a}^{2}  } \\  \\   : \implies \sf{36 =  {a}^{2} } \\  \\   : \implies \sf{ \sqrt{36}  = a} \\  \\   : \implies { \boxed {\underline{\sf \red{6 = a}}}}

  • So, the side of equilateral triangle is 6 cm.

Now,

➞ Perimeter of equilateral triangle = 3a

➞ Perimeter of equilateral triangle = 3 × 6 cm

➞ Perimeter of equilateral triangle = 18 cm

  • So, the perimeter of equilateral triangle is 18 cm.

____________________

Answered by Yuseong
6

Required Solution:

As per the provided question,we have:

  • Area of the equilateral triangle = 9√3 cm²

We have to find:

  • Perimeter

Step-by-step solution:

We know that,

  •  {\underline {\boxed {\small {\bf \gray { Perimeter \: of \: ∆ = Sum \: of \: all \: sides } }}}}

So,firstly we need to find sides:

As we know,

  •  {\underline {\boxed {\small {\bf \gray { Area \: of \: an \: equilateral \: ∆ = \dfrac{\sqrt{3}}{4} {s}^{2} } }}}}

Where,

  • s = side
  • Area = 9√3 cm² [Given]

Substitute the values to find side:

 \rm { \longmapsto 9 \sqrt{3}  =  \dfrac{ \sqrt{3} }{4} {(s)}^{2} }

 \rm { \longmapsto 9 \sqrt{3} \times 4 =  \sqrt{3} \times {(s)}^{2} }

 \rm { \longmapsto 36 \sqrt{3}  =  \sqrt{3} \times {(s)}^{2} }

 \rm { \longmapsto {(s)}^{2}  =  \dfrac{36 \cancel{\sqrt{3}} }{\cancel{\sqrt{3}} }  }

 \rm { \longmapsto  {(s)}^{2} = 36}

 \rm { \longmapsto s = \sqrt{36} }

 \rm \purple { \longmapsto s =  6cm }

Therefore, measure of the sides of the equilateral triangle is 6cm.

Now,

  •  {\underline {\boxed {\small {\bf \gray { Perimeter \: of \: ∆ = Sum \: of \: all \: sides } }}}}

 \rm { \longmapsto Perimeter = 6 + 6 + 6 }

 \rm \purple { \longmapsto Perimeter = 18cm }

Therefore, perimeter of the equilateral triangle is 18cm.

▬▬▬▬▬▬▬▬▬▬▬

Extra!

Some related formulas:

General triangle:

  • Perimeter = a + b + c

Where, a,b,c are sides.

  • Area =  \dfrac{1}{2}bh

Equilateral triangle

  • Perimeter = 3 × side
  • Area =  \sf{ \dfrac{\sqrt{3}}{4} {s}^{2}  }

Right triangle

  • Perimeter = Sum of all sides
  • Area =  \dfrac{1}{2}bh

Isosceles triangle

  • Perimeter = 2a + d

Where, a = two equal sides

d = the one which is unequal side

  • Area =  \sf{ \dfrac{1}{2} \times b \times \sqrt{ {a }^{2} -   \dfrac{   {b}^{2}  }{4}  }  }

Where, a = two equal sides

b = base

▬▬▬▬▬▬▬▬▬▬▬

Similar questions