Math, asked by madhulikarao4, 11 months ago

In Figure 6, two circles touch each other at A. A common tangent touches
them at B and C and another common tangent at A meets the previous
common tangent at P. Prove that BAC = 90°.

Attachments:

Answers

Answered by mitwa2004
11

Answer:

Step-by-step explanation:

AP=PC(tangents from external point are equal in length)

AP=BP (tangents from external point are equal in length)

THEREFORE, PC=BP

THEREFORE, <PAC= <PAB ( <s opp to equal sides are equal)

SINCE, BP=AP=AC

<PBA=<PAB(=<PAC)=<PCA

THEREFORE, <PBA=<PCA

CONSIDER  <PBA=<PCA=X

IN TRIANGLE BAC,

<BAC+<CBA+<BCA =180(ANGLE SUM PROPERTY).....(I)

SINCE TANGENTS ARE PERPENDICULAR TO RADIUS,

<CBA=90-X    .......(II)

SIMILARLY, <BCA=90-X .......(III)

SUBSTITUTING (II),(III) IN (I)

<BAC+90-X+90-X=180

<BAC=180-180+2X

<BAC=2X  .......(IV)

THEREFORE, <BAC+<CBA+<BCA=X+X+2X=180

                                                                    4X=180

                                                                       X=45

SUBSTITUTING X IN (IV)

<BAC=2(45)

<BAC= 90°

Answered by 10n04bharathdm
2

Answer:

GIVEN: TWO CIRCLES AND COMMON TANGENTS BC AND PA

.

TO PROVE: <BAC=90°

Step-by-step explanation:

AP=PC(tangents from external point are equal in length)

AP=BP (tangents from external point are equal in length)

THEREFORE, PC=BP

THEREFORE, <PAC= <PAB ( <s opp to equal sides are equal)

SINCE, BP=AP=AC

<PBA=<PAB(=<PAC)=<PCA

THEREFORE, <PBA=<PCA

CONSIDER  <PBA=<PCA=X

IN TRIANGLE BAC,

<BAC+<CBA+<BCA =180(ANGLE SUM PROPERTY).....(I)

SINCE TANGENTS ARE PERPENDICULAR TO RADIUS

<CBA=90-X    .......(II)

SIMILARLY, <BCA=90-X .......(III)

SUBSTITUTING (II),(III) IN (I)

<BAC+90-X+90-X=180

<BAC=180-180+2X

<BAC=2X  .......(IV)

THEREFORE, <BAC+<CBA+<BCA=X+X+2X=180

                                                                   4X=180

                                                                      X=45

SUBSTITUTING X IN (IV)

<BAC=2(45)

<BAC= 90°

Similar questions