In figure, ABCD is a parallelogram, AE ⊥ DC and CF ⊥ AD. If AB = 16 cm, AE = 8 cm and CF = 10 cm, find AD.
Answers
Answer:
We have, AE ⊥ DC and AB = 16 cm
∵ AB = CD [Opposite sides of parallelogram]
∴ CD = 16 cm
Now, area of parallelogram ABCD = CD x AE
= (16 x 8) cm2 = 128 cm2 [∵ AE = 8 cm]
Since, CF ⊥ AD
∴ Area of parallelogram ABCD = AD x CF
⇒ AD x CF = 128 cm
⇒ AD x 10 cm = 128 cm2 [∵ CF= 10 cm]
⇒ AD = 128/10 cm = 12.8 cm 10
Thus, the required length of AD is 12.8 cm
Answer:
AD = 12.8cm
Step-by-step explanation:
AB = CD------------ (opposite sides of a parallelogram)
16cm = CD
Area of ║°gram = base x height
= AE x CD
= 8 x 16
= 128cm²
Area of ║°gram = base x height
128 = AD x CF
128 = AD x 10
12.8cm = AD
Therefore, the length of AD is 12.8cm.