Math, asked by Srinivas7158, 1 year ago

In how many ways can we write 20 as a sum of 3 non-negative integer?

Answers

Answered by arunkumar33
2
5+6+9
1+8+11
2+4+14
is the answer
Answered by ColinJacobus
2

Answer:  The required number of ways is 25.

Step-by-step explanation:  We are given to find the number of ways in which 20 can be written as a sum of 3 non-negative integers.

The partitions of 20 in 3 non-negative integers are

(1)  20  =   18 + 1 + 1,

(2) 20  =  17 + 2 + 1,

(3) 20  =   16 + 3 + 1,

(4) 20  =   16 + 2 + 2,

(5) 20  =   15 + 4 + 1,

(6) 20  =   15 + 3 + 2,

(7) 20  =  14 + 5 + 1,

(8) 20  =   14 + 4 + 2,

(9) 20 =    14 + 3 + 3,

(10) 20  =  13 + 6 + 1,

(11)  20  =   13 + 5 + 2,

(12) 20  =   13 + 4 + 3,

(13) 20  =   12 + 7 + 1,

(14)  20 =   12 + 6 + 2,

(15) 20  =   12 + 5 + 3,

(16)  20 =     12 + 4 + 4,

(17)  20 =     11 + 8 + 1,

(18)  20 =     11 + 7 + 2,

(19)   20 =    11 + 6 + 3,

(20)  20 =   11 + 5 + 4,

(21)   20  =    10 + 9 +1,

(22)  20  =    10 + 8 +2,

(23)   20 =     10 + 7 + 3,

(24)   20 =     10 + 6 + 4,

(25)   20  =   10 + 5 + 5 .

So, we can write 20 as a sum of 3 non-negative integers in 25 ways.

Thus, the required number of ways is 25.

Similar questions