In quadrilateral PRQS , PR = PS and PQ bisects.
Show that ∆ PQR ~ ∆ PQS
What can you say about QR and QS.
Answers
Answer:
In ∆PQR and ∆PQS,
PR = PS. (Given)
L QPR = L QPS. (PQ bisects)
PQ = PQ. (Common)
:. ∆PQR = ∆PQS {By SAS Congruency rule}
=> QR = QS [CPCT]
Hence, proved.
In Quadrilateral PRQS
PR = PS
PQ bisects angle P
→ (1)
∆ PQR ~ ∆ PQS
From ∆ PQR and ∆ PQS
PR = PS
angle RPQ = angle SPQ
PQ = PQ
By SAS congruency rule
∆ PQR ~ ∆ PQS
:. The corresponding parts of congruent traingles are equal .
┳┻┳┻╭━━━━╮╱▔▔▔╲
┻┳┻┳┃╯╯╭━┫▏╰╰╰▕
┳┻┳┻┃╯╯┃▔╰┓▔▂▔▕╮
┻┳┻┳╰╮╯┃┈╰┫╰━╯┏╯
┳┻┳┻┏╯╯┃╭━╯┳━┳╯
┻┳┻┳╰━┳╯▔╲╱▔╭╮▔╲
┳┻┳┻┳┻┃┈╲┈╲╱╭╯╮▕
┻┳┻┳┻┳┃┈▕╲▂╱┈╭╯╱
┳┻┳┻┳┻┃'''┈┃┈┃┈'''╰╯
┻┳┻┳┻┏╯▔'''╰┓┣━┳┫
┳┻┳┻┳╰┳┳┳'''╯┃┈┃┃
┻┳┻┳┻┳┃┃┃┈'''┃┈┃┃
┳┻┳┻┳┻┃┃┃'''┊┃┈┃┃
┻┳┻┳┻┳┃┃┃┈'''┃┈┃┃.
┳┻┳┻┳┻┣╋┫'''┊┣━╋┫
┻┳┻┳┻╭╯╰╰-╭╯━╯.''╰╮
Love You Forever,,,,
[ NOTE :- Mate your diagram is ABCD but according to your question I answered PQRS ]