In the adjoining figure angle x =62° angle xyz =54° if Yo and zo are the bisectors of anglr xyz respectively of triangle Xyz then find angle ozy and angle yoz
Answers
→ In triangle xyz,
→ Angle x = 62°
→ Angle xyz = 54°
→ Angle x + angle xyz + angle z = 180° [by angle addition property of triangle]
→ 62° + 54° + angle z = 180°
→ 116°+angle z = 180°
→ Angle z = 180-116
→ Angle z = 64°
→ oz is angle bisector of angle xyz
→ Angle ozy = 32° •••••••••• (1) eq
→ Similarly oz is the angle bisector of angle xyz
→ Angle oyz = 27°••••••••••(2) eq
→ In triangle oyz,
→ Angle oyz + ozy + yoz = 180°[ by angle sum property of triangle]
→ 27°+32°+ angle yoz = 180°
→ 59°+angle yoz=180°
→ Angle yoz = 180°+59°
→ Angle yoz = 121°
→ Therefore, angle ozy =32° and angle yoz = 121°
Given:
∠X = 62°
∠XYZ= 54°
To Find:
∠OZY and ∠YOZ
Solution:
given that,
∠X = 62° and ∠XYZ = 54°
∠XYZ + ∠XZY + ∠YXZ = 180°
[angle sum property of triangle]
⟹ 54° + ∠XYZ + 62° = 180°
⟹ ∠XZY + 116° = 180°
⟹ ∠XZY = 180° - 116° = 64°
now, ∠OZY ∠XZY
[ ∵ ZO is bisector of ∠XZY ]
Similarly,
∠OYZ =
Now,in ∆OYZ,we have
∠OYZ + ∠OZY + ∠YOZ = 180°
[angle sum property of triangle]
⟹ 27° + 32° + ∠YOZ = 180°
⟹∠YOZ = 180° - 59° = 121°
Hence,