In the fig, ABCD is a rectangle, in which BC = 2AB. a point E lies oc CD produced such that CE= 2BC. find AC: BE.
Answers
Answered by
36
We apply Pythagoras theorem to get the answer.
ΔABC is a right angle triangle at B.
AC² = AB² + BC² = AB² + (2 AB)² = 5 AB²
AC = √5 AB
ΔBCE is a right angle triangle at C.
BE² = BC² + CE² = BC² + (2 BC)² = 5 BC² = 5 (2 AB)²
= 20 AB²
BE = 2√5 AB
AC : BE = √5 AB : 2 √5 AB = 1 : 2
ΔABC is a right angle triangle at B.
AC² = AB² + BC² = AB² + (2 AB)² = 5 AB²
AC = √5 AB
ΔBCE is a right angle triangle at C.
BE² = BC² + CE² = BC² + (2 BC)² = 5 BC² = 5 (2 AB)²
= 20 AB²
BE = 2√5 AB
AC : BE = √5 AB : 2 √5 AB = 1 : 2
Answered by
5
In triangle ABC,
AC²=AB²+BC² (Pythagoras theorem)
AC²=AB²+(2AB)²
AC²=AB²+4AB²
AC²=5AB²
AC=√5 AB
In triangle BCE,
BE²=BC²+CE²
BE²=BC²+(2BC)²
BE²=BC²+4BC²
BE²=5BC²
BE =√5 BC
Then AC:BE=1:1
Attachments:
Similar questions